DNA Damage: References
1. Chakarov,S., Petkova, R., Russev,G.Ch., & Zhelev,N. DNA damage and mutation. Types of DNA damage. BioDiscovery 11, e8957 (2014). [CrossRef]
2. Liu,Z., Wang,L., & Zhong,D. Dynamics and mechanisms of DNA repair by photolyase. Phys. Chem. Chem. Phys. 17, 11933-11949 (2015). [PubMed]
3. Sancar,A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103, 2203-2237 (2003). [PubMed]
4. Rastogi,R.P., Richa, Kumar,A., Tyagi,M.B., & Sinha,R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 592980 (2010). [PubMed]
5. Chatterjee,N. & Walker,G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235-263 (2017). [PubMed]
6. Davies,R.J. Royal Irish Academy Medal Lecture. Ultraviolet radiation damage in DNA. Biochem. Soc. Trans. 23, 407-418 (1995). [PubMed]
7. Mitchell,D.L. & Nairn,R.S. The biology of the (6-4) photoproduct. Photochem. Photobiol. 49, 805-819 (1989). [PubMed]
8. Varghese,A.J. Photochemistry of nucleic acids and their constituents. Photophysiology 7, 207-274 (1972). [PubMed]
9. Douki,T. et al. Oxidation of guanine in cellular DNA by solar UV radiation: biological role. Photochem. Photobiol. 70, 184-190 (1999).[PubMed]
10. Douki,T. & Cadet,J. Modification of DNA bases by photosensitized one-electron oxidation. Int. J. Radiat. Biol. 75, 571-581 (1999). [PubMed]
11. Kvam,E. & Tyrrell,R.M. Artificial background and induced levels of oxidative base damage in DNA from human cells. Carcinogenesis 18, 2281-2283 (1997). [PubMed]
12. Epe,B. Genotoxicity of singlet oxygen. Chem. Biol. Interact. 80, 239-260 (1991). [PubMed]
13. Kielbassa,C., Roza,L., & Epe,B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18, 811-816 (1997). [PubMed]
14. Zhang,X. et al. Induction of 8-oxo-7,8-dihydro-2′-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells. Photochem. Photobiol. 65, 119-124 (1997). [PubMed]
15. Kvam,E. & Tyrrell,R.M. Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18, 2379-2384 (1997). [PubMed]
16. Peak,J.G., Pilas,B., Dudek,E.J., & Peak,M.J. DNA breaks caused by monochromatic 365 nm ultraviolet-A radiation or hydrogen peroxide and their repair in human epithelioid and xeroderma pigmentosum cells. Photochem. Photobiol. 54, 197-203 (1991). [PubMed]
17. Peak,M.J. & Peak,J.G. DNA-to-protein crosslinks and backbone breaks caused by far- and near-ultraviolet, and visible light radiations in mammalian cells. Basic Life Sci. 38, 193-202 (1986). [PubMed]
18. Hsu,G.W., Huang,X., Luneva,N.P., Geacintov,N.E., & Beese,L.S. Structure of a high fidelity DNA polymerase bound to a benzo[a]pyrene adduct that blocks replication. J. Biol. Chem. 280, 3764-3770 (2005). [PubMed]
19. Yu,H. Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 20, 149-183 (2002). [PubMed]
20. Schoket,B. DNA damage in humans exposed to environmental and dietary polycyclic aromatic hydrocarbons. Mutat. Res. 424, 143-153 (1999). [PubMed]
21. Phillips,D.H. Fifty years of benzo(a)pyrene. Nature 303, 468-472 (1983). [PubMed]
22. Luch,A. On the impact of the molecule structure in chemical carcinogenesis. EXS 99, 151-179 (2009). [PubMed]
23. Alkylating agents. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda (2012). [PubMed]
24. Fu,D., Calvo,J.A., & Samson,L.D. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer 12, 104-120 (2012). [PubMed]
25. Crutzen,P.J. & Andreae,M.O. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669-1678 (1990). [PubMed]
26. Naegeli,H. DNA structure: inherent instability and genotoxic reactions. In Mechanisms of DNA damage recognition in mammalian cells (ed. Naegeli,H.), 47-70, Springer, Boston (1997). [CrossRef]
27. Loechler,E.L. A violation of the Swain-Scott principle, and not SN1 versus SN2 reaction mechanisms, explains why carcinogenic alkylating agents can form different proportions of adducts at oxygen versus nitrogen in DNA. Chem. Res. Toxicol. 7, 277-280 (1994). [PubMed]
28. Verly,W.G. Chromatin and DNA repair after treatment with simple alkylating agents; relation to carcinogenesis. Prog. Clin. Biol. Res. 132B, 261-266 (1983). [PubMed]
29. Lawley,P.D. Effects of some chemical mutagens and carcinogens on nucleic acids. Prog. Nucleic Acid Res. Mol. Biol. 5, 89-131 (1966). [PubMed]
30. Emadi,A., Jones,R.J., & Brodsky,R.A. Cyclophosphamide and cancer: golden anniversary. Nat. Rev. Clin. Oncol. 6, 638-647 (2009). [PubMed]
31. Serrone,L., Zeuli,M., Sega,F.M., & Cognetti,F. Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J. Exp. Clin. Cancer Res. 19, 21-34 (2000). [PubMed]
32. Dasari,S. & Tchounwou,P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364-378 (2014). [PubMed]
33. Hammons,G.J. et al. Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant human cytochrome P450 enzymes. Carcinogenesis 18, 851-854 (1997). [PubMed]
34. Eckel,L.M. & Krugh,T.R. 2-Aminofluorene modified DNA duplex exists in two interchangeable conformations. Nat. Struct. Biol. 1, 89-94 (1994). [PubMed]
35. Eckel,L.M. & Krugh,T.R. Structural characterization of two interchangeable conformations of a 2-aminofluorene-modified DNA oligomer by NMR and energy minimization. Biochemistry 33, 13611-13624 (1994). [PubMed]
36. Shibutani,S., Suzuki,N., Tan,X., Johnson,F., & Grollman,A.P. Influence of flanking sequence context on the mutagenicity of acetylaminofluorene-derived DNA adducts in mammalian cells. Biochemistry 40, 3717-3722 (2001). [PubMed]
37. Chatterjee,N., Lin,Y., Santillan,B.A., Yotnda,P., & Wilson,J.H. Environmental stress induces trinucleotide repeat mutagenesis in human cells. Proc. Natl. Acad. Sci. U. S. A 112, 3764-3769 (2015). [PubMed]
38. Chatterjee,N., Lin,Y., Yotnda,P., & Wilson,J.H. Environmental stress induces trinucleotide repeat mutagenesis in human cells by alt-nonhomologous end joining repair. J. Mol. Biol. 428, 2978-2980 (2016). [PubMed]
39. Essigmann,J.M. et al. Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Proc. Natl. Acad. Sci. U. S. A 74, 1870-1874 (1977). [PubMed]
40. Smela,M.E., Currier,S.S., Bailey,E.A., & Essigmann,J.M. The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis. Carcinogenesis 22, 535-545 (2001). [PubMed]
41. Henner,W.D., Grunberg,S.M., & Haseltine,W.A. Sites and structure of gamma radiation-induced DNA strand breaks. J. Biol. Chem. 257, 11750-11754 (1982). [PubMed]
42. Desouky,O., Ding,N., & Zhou,G. Targeted and non-targeted effects of ionizing radiation. J. Radiat. Res. Appl. Sci. 8, 247-254 (2015). [CrossRef]
43. Wardman,P. The importance of radiation chemistry to radiation and free radical biology (The 2008 Silvanus Thompson Memorial Lecture). Br. J. Radiol. 82, 89-104 (2009). [PubMed]
44. Vignard,J., Mirey,G., & Salles,B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother. Oncol. 108, 362-369 (2013). [PubMed]
45. Cadet,J., Douki,T., & Ravanat,J.L. Oxidatively generated base damage to cellular DNA. Free Radic. Biol. Med. 49, 9-21 (2010). [PubMed]
46. Ba,X. et al. The role of 8-oxoguanine DNA glycosylase-1 in inflammation. Int. J. Mol. Sci. 15, 16975-16997 (2014). [PubMed]
47. Jackson,S.P. & Bartek,J. The DNA-damage response in human biology and disease. Nature 461, 1071-1078 (2009). [PubMed]
48. Wiebauer,K. & Jiricny,J. Mismatch-specific thymine DNA glycosylase and DNA polymerase beta mediate the correction of G.T mispairs in nuclear extracts from human cells. Proc. Natl. Acad. Sci. U. S. A 87, 5842-5845 (1990). [PubMed]
49. Neddermann,P. & Jiricny,J. Efficient removal of uracil from G.U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells. Proc. Natl. Acad. Sci. U. S. A 91, 1642-1646 (1994). [PubMed]
50. Lindahl,T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog. Nucleic Acid Res. Mol. Biol. 22, 135-192 (1979). [PubMed]
51. De Bont R. & van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19, 169-185 (2004). [PubMed]
52. Yonekura,S., Nakamura,N., Yonei,S., & Zhang-Akiyama,Q.M. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. J. Radiat. Res. 50, 19-26 (2009). [PubMed]
53. Pfeifer,G.P., You,Y.H., & Besaratinia,A. Mutations induced by ultraviolet light. Mutat. Res. 571, 19-31 (2005). [PubMed]
54. Chen,H. & Shaw,B.R. Kinetics of bisulfite-induced cytosine deamination in single-stranded DNA. Biochemistry 32, 3535-3539 (1993). [PubMed]
55. d’Ischia,M., Napolitano,A., Manini,P., & Panzella,L. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications. Chem. Res. Toxicol. 24, 2071-2092 (2011). [PubMed]
56. Moyer,R., Briley,D., Johnsen,A., Stewart,U., & Shaw,B.R. Echinomycin, a bis-intercalating agent, induces C–>T mutations via cytosine deamination. Mutat. Res. 288, 291-300 (1993). [PubMed]
57. Fryxell,K.J. & Zuckerkandl,E. Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol. Biol. Evol. 17, 1371-1383 (2000). [PubMed]
58. Bellacosa,A. & Drohat,A.C. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. DNA Repair (Amst) 32, 33-42 (2015). [PubMed]
59. Nabel,C.S., Manning,S.A., & Kohli,R.M. The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential. ACS Chem. Biol. 7, 20-30 (2012). [PubMed]
60. Rydberg,B. & Lindahl,T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1, 211-216 (1982). [PubMed]
61. Zhao,C., Tyndyk,M., Eide,I., & Hemminki,K. Endogenous and background DNA adducts by methylating and 2-hydroxyethylating agents. Mutat. Res. 424, 117-125 (1999). [PubMed]
62. Ehrlich,M. DNA hypomethylation in cancer cells. Epigenomics 1, 239-259 (2009). [PubMed]
63. Esteller,M., Corn,P.G., Baylin,S.B., & Herman,J.G. A gene hypermethylation profile of human cancer. Cancer Res. 61, 3225-3229 (2001). [PubMed]
64. Fleisher,A.S. et al. Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene 20, 329-335 (2001). [PubMed]
65. Esteller,M. et al. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res. 61, 4689-4692 (2001). [PubMed]
66. Larson,K., Sahm,J., Shenkar,R., & Strauss,B. Methylation-induced blocks to in vitro DNA replication. Mutat. Res. 150, 77-84 (1985). [PubMed]
67. Preston,B.D., Singer,B., & Loeb,L.A. Comparison of the relative mutagenicities of O-alkylthymines site-specifically incorporated into phi X174 DNA. J. Biol. Chem. 262, 13821-13827 (1987). [PubMed]
68. Loechler,E.L., Green,C.L., & Essigmann,J.M. In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome. Proc. Natl. Acad. Sci. U. S. A 81, 6271-6275 (1984). [PubMed]
69. Preston,B.D., Singer,B., & Loeb,L.A. Mutagenic potential of O4-methylthymine in vivo determined by an enzymatic approach to site-specific mutagenesis. Proc. Natl. Acad. Sci. U. S. A 83, 8501-8505 (1986). [PubMed]
70. Ye,N., Holmquist,G.P., & O’Connor,T.R. Heterogeneous repair of N-methylpurines at the nucleotide level in normal human cells. J. Mol. Biol. 284, 269-285 (1998). [PubMed]
71. Zak,P., Kleibl,K., & Laval,F. Repair of O6-methylguanine and O4-methylthymine by the human and rat O6-methylguanine-DNA methyltransferases. J. Biol. Chem. 269, 730-733 (1994). [PubMed]
72. Sakumi,K. & Sekiguchi,M. Structures and functions of DNA glycosylases. Mutat. Res. 236, 161-172 (1990). [PubMed]
73. Lindahl,T. Instability and decay of the primary structure of DNA. Nature 362, 709-715 (1993). [PubMed]
74. Lindahl,T. & Barnes,D.E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 65, 127-133 (2000). [PubMed]
75. Lindahl,T. & Karlstrom,O. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution. Biochemistry 12, 5151-5154 (1973). [PubMed]
76. Lindahl,T. & Nyberg,B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610-3618 (1972). [PubMed]
77. Chan,K., Resnick,M.A., & Gordenin,D.A. The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair (Amst.) 12, 878-889 (2013). [PubMed]
78. Bailly,V. & Verly,W.G. Possible roles of beta-elimination and delta-elimination reactions in the repair of DNA containing AP (apurinic/apyrimidinic) sites in mammalian cells. Biochem. J. 253, 553-559 (1988). [PubMed]
79. Mittler,R. ROS Are Good. Trends Plant Sci. 22, 11-19 (2017). [PubMed]
80. Paiva,C.N. & Bozza,M.T. Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox Signal. 20, 1000-1037 (2014). [PubMed]
81. Henle,E.S. & Linn,S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J. Biol. Chem. 272, 19095-19098 (1997). [PubMed]
82. Nita,M. & Grzybowski,A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell Longev. 2016, 3164734 (2016). [PubMed]
83. Winterbourn,C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278-286 (2008). [PubMed]
84. Steenken,S. & Jovanovic,S.V. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc. 119, 617-618 (1997).
85. Giorgio,M., Dellino,I.G., Gambino,V., Roda,N., & Pelicci,P.G. On the epigenetic role of guanosine oxidation. Redox Biol. 29, 101398 (2020). [PubMed]
86. Fenton,H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 65, 899-910 (1894). [CrossRef]
87. Lymar,S.V., Khairutdinov,R.F., & Hurst,J.K. Hydroxyl radical formation by O-O bond homolysis in peroxynitrous acid. Inorg. Chem. 42, 5259-5266 (2003). [PubMed]
88. Carballal,S., Bartesaghi,S., & Radi,R. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim. Biophys. Acta 1840, 768-780 (2014). [PubMed]
89. Jena,N.R. & Mishra,P.C. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study. J. Phys. Chem. B 109, 14205-14218 (2005). [PubMed]
90. Rokhlenko,Y., Geacintov,N.E., & Shafirovich,V. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions. J. Am. Chem. Soc. 134, 4955-4962 (2012). [PubMed]
91. Gates,K.S., Nooner,T., & Dutta,S. Biologically relevant chemical reactions of N7-alkylguanine residues in DNA. Chem. Res. Toxicol. 17, 839-856 (2004). [PubMed]
92. Minko,I.G., Rizzo,C.J., & Lloyd,R.S. Mutagenic potential of nitrogen mustard-induced formamidopyrimidine DNA adduct: Contribution of the non-canonical alpha-anomer. J. Biol. Chem. 292, 18790-18799 (2017). [PubMed]
93. Alekseyev,Y.O., Hamm,M.L., & Essigmann,J.M. Aflatoxin B1 formamidopyrimidine adducts are preferentially repaired by the nucleotide excision repair pathway in vivo. Carcinogenesis 25, 1045-1051 (2004). [PubMed]
94. Vartanian,V. et al. NEIL1 protects against aflatoxin-induced hepatocellular carcinoma in mice. Proc. Natl. Acad. Sci. U. S. A 114, 4207-4212 (2017). [PubMed]
95. van Loon B., Markkanen,E., & Hubscher,U. Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst) 9, 604-616 (2010). [PubMed]
96. Nair,J., Barbin,A., Guichard,Y., & Bartsch,H. 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P-postlabeling. Carcinogenesis 16, 613-617 (1995). [PubMed]
97. Barbin,A., Wang,R., O’Connor,P.J., & Elder,R.H. Increased formation and persistence of 1,N(6)-ethenoadenine in DNA is not associated with higher susceptibility to carcinogenesis in alkylpurine-DNA-N-glycosylase knockout mice treated with vinyl carbamate. Cancer Res. 63, 7699-7703 (2003). [PubMed]
98. Barbin,A. Etheno-adduct-forming chemicals: from mutagenicity testing to tumor mutation spectra. Mutat. Res. 462, 55-69 (2000). [PubMed]
99. VanderVeen,L.A. et al. Evaluation of the mutagenic potential of the principal DNA adduct of acrolein. J. Biol. Chem. 276, 9066-9070 (2001). [PubMed]
100. Plastaras,J.P., Riggins,J.N., Otteneder,M., & Marnett,L.J. Reactivity and mutagenicity of endogenous DNA oxopropenylating agents: base propenals, malondialdehyde, and N(epsilon)-oxopropenyllysine. Chem. Res. Toxicol. 13, 1235-1242 (2000). [PubMed]
101. Demple,B. & Harrison,L. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63, 915-948 (1994). [PubMed]
102. Henner,W.D., Grunberg,S.M., & Haseltine,W.A. Enzyme action at 3′ termini of ionizing radiation-induced DNA strand breaks. J. Biol. Chem. 258, 15198-15205 (1983). [PubMed]
103. Colotta,F., Allavena,P., Sica,A., Garlanda,C., & Mantovani,A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073-1081 (2009). [PubMed]
104. Multhoff,G. & Radons,J. Radiation, inflammation, and immune responses in cancer. Front. Oncol. 2:58, doi: 10.3389/fonc.2012.00058 (2012). [PubMed]
105. Geigl,J.B., Obenauf,A.C., Schwarzbraun,T., & Speicher,M.R. Defining ‘chromosomal instability’. Trends Genet. 24, 64-69 (2008). [PubMed]
106. Li,K., Luo,H., Huang,L., Luo,H., & Zhu,X. Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int. 20, 16 (2020). [PubMed]
107. Carter,S.L., Eklund,A.C., Kohane,I.S., Harris,L.N., & Szallasi,Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38, 1043-1048 (2006). [PubMed]
108. Crasta,K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53-58 (2012). [PubMed]
109. Georgoulis,A., Vorgias,C.E., Chrousos,G.P., & Rogakou,E.P. Genome instability and gH2AX. Int. J. Mol. Sci. 18, (2017). [PubMed]
110. Lombard,D.B. et al. DNA repair, genome stability, and aging. Cell 120, 497-512 (2005). [PubMed]
111. Sun,N., Youle,R.J., & Finkel,T. The mitochondrial basis of aging. Mol. Cell 61, 654-666 (2016). [PubMed]
112. Szczepanowska,K. & Trifunovic,A. Origins of mtDNA mutations in ageing. Essays Biochem. 61, 325-337 (2017). [PubMed]
113. Wang,H.J., Pan,Y.X., Wang,W.Z., Zucker,I.H., & Wang,W. NADPH oxidase-derived reactive oxygen species in skeletal muscle modulates the exercise pressor reflex. J. Appl. Physiol. (1985) 107, 450-459 (2009). [PubMed]
114. Baeeri,M. et al. a-Lipoic acid prevents senescence, cell cycle arrest, and inflammatory cues in fibroblasts by inhibiting oxidative stress. Pharmacol. Res. 141, 214-223 (2019). [PubMed]
115. Herbig,U., Ferreira,M., Condel,L., Carey,D., & Sedivy,J.M. Cellular senescence in aging primates. Science 311, 1257 (2006). [PubMed]
116. Collado,M., Blasco,M.A., & Serrano,M. Cellular senescence in cancer and aging. Cell 130, 223-233 (2007). [PubMed]
117. Campisi,J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513-522 (2005). [PubMed]
118. Vousden,K.H. & Lane,D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8, 275-283 (2007). [PubMed]
119. Stewart,S.A. & Weinberg,R.A. Telomeres: cancer to human aging. Annu. Rev. Cell Dev. Biol. 22, 531-557 (2006). [PubMed]
120. Armanios,M. Telomeres and age-related disease: how telomere biology informs clinical paradigms. J. Clin. Invest 123, 996-1002 (2013). [PubMed]
121. de Lange,T. Protection of mammalian telomeres. Oncogene 21, 532-540 (2002). [PubMed]
122. Bachand,F., Triki,I., & Autexier,C. Human telomerase RNA-protein interactions. Nucleic Acids Res. 29, 3385-3393 (2001). [PubMed]
123. Chang,E. & Harley,C.B. Telomere length and replicative aging in human vascular tissues. Proc. Natl. Acad. Sci. U. S. A 92, 11190-11194 (1995). [PubMed]
124. Longhese,M.P. DNA damage response at functional and dysfunctional telomeres. Genes Dev. 22, 125-140 (2008). [PubMed]
125. Marcand,S. How do telomeres and NHEJ coexist? Mol. Cell Oncol. 1, e963438 (2014). [PubMed]
126. Hewitt,G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012). [PubMed]
127. Takai,H., Smogorzewska,A., & de,L.T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549-1556 (2003). [PubMed]
128. Sahin,E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359-365 (2011). [PubMed]
129. Von Zglinicki,T., Saretzki,G., Ladhoff,J., dda di,F.F., & Jackson,S.P. Human cell senescence as a DNA damage response. Mech. Ageing Dev. 126, 111-117 (2005). [PubMed]
130. d’Adda di Fagagna,F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198 (2003). [PubMed]
131. Rudolph,K.L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701-712 (1999). [PubMed]
132. Blasco,M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25-34 (1997). [PubMed]
133. Vogel,H., Lim,D.S., Karsenty,G., Finegold,M., & Hasty,P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl. Acad. Sci. U. S. A 96, 10770-10775 (1999). [PubMed]
134. Lim,D.S. et al. Analysis of ku80-mutant mice and cells with deficient levels of p53. Mol. Cell Biol. 20, 3772-3780 (2000). [PubMed]
135. Chin,L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527-538 (1999). [PubMed]
136. Celeste,A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922-927 (2002). [PubMed]
137. Finkel,T. & Holbrook,N.J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247 (2000). [PubMed]
138. Dianov,G.L. et al. Base excision repair in nuclear and mitochondrial DNA. Prog. Nucleic Acid Res. Mol. Biol. 68, 285-297 (2001). [PubMed]
139. Chen,S.K. et al. Age-associated decrease of oxidative repair enzymes, human 8-oxoguanine DNA glycosylases (hOgg1), in human aging. J. Radiat. Res. 44, 31-35 (2003). [PubMed]
140. Ichiba,M. et al. Significance of urinary excretion of 8-hydroxy-2′-deoxyguanosine in healthy subjects and liver disease patients. Hepatogastroenterology 54, 1736-1740 (2007). [PubMed]
141. Mikkelsen,L. et al. Aging and defense against generation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in DNA. Free Radic. Biol. Med. 47, 608-615 (2009). [PubMed]
142. Radak,Z. et al. Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radic. Biol. Med. 51, 417-423 (2011). [PubMed]
143. Tian,F., Tong,T.J., Zhang,Z.Y., McNutt,M.A., & Liu,X.W. Age-dependent down-regulation of mitochondrial 8-oxoguanine DNA glycosylase in SAM-P/8 mouse brain and its effect on brain aging. Rejuvenation. Res. 12, 209-215 (2009). [PubMed]
144. Reis,A. & Hermanson,O. The DNA glycosylases OGG1 and NEIL3 influence differentiation potential, proliferation, and senescence-associated signs in neural stem cells. Biochem. Biophys. Res. Commun. 423, 621-626 (2012). [PubMed]
145. Wei,W. & Ji,S. Cellular senescence: molecular mechanisms and pathogenicity. J. Cell Physiol 233, 9121-9135 (2018). [PubMed]
146. Freund,A., Orjalo,A.V., Desprez,P.Y., & Campisi,J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238-246 (2010). [PubMed]
147. Zuo,L. et al. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int. J. Mol. Sci. 20, (2019). [PubMed]
148. Reuter,S., Gupta,S.C., Chaturvedi,M.M., & Aggarwal,B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603-1616 (2010). [PubMed]
149. Abais,J.M., Xia,M., Zhang,Y., Boini,K.M., & Li,P.L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal. 22, 1111-1129 (2015). [PubMed]
150. De Cecco,M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73-78 (2019). [PubMed]
151. Watad,A. et al. Autoimmunity in the elderly: insights from basic science and clinics – a mini-review. Gerontology 63, 515-523 (2017). [PubMed]
152. Franceschi,C. et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front. Med. (Lausanne) 5, 61 (2018). [PubMed]
153. North,B.J. & Sinclair,D.A. The intersection between aging and cardiovascular disease. Circ. Res. 110, 1097-1108 (2012). [PubMed]
154. Lakatta,E.G. So! What’s aging? Is cardiovascular aging a disease? J. Mol. Cell Cardiol. 83, 1-13 (2015). [PubMed]
155. Pirillo,A., Norata,G.D., & Catapano,A.L. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013, 152786 (2013). [PubMed]
156. Cervantes Gracia,K., Llanas-Cornejo,D., & Husi,H. CVD and oxidative stress. J. Clin. Med. 6, (2017). [PubMed]
157. Olivieri,F. et al. Cellular senescence in cardiovascular diseases: potential age-related mechanisms and implications for treatment. Curr. Pharm. Des 19, 1710-1719 (2013). [PubMed]
158. Picca,A. et al. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. Int. J. Mol. Sci. 18, (2017). [PubMed]
159. Rippo,M.R. et al. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp. Gerontol. 56, 154-163 (2014). [PubMed]
160. Paneni,F., Diaz,C.C., Libby,P., Luscher,T.F., & Camici,G.G. The aging cardiovascular system: understanding it at the cellular and clinical levels. J. Am. Coll. Cardiol. 69, 1952-1967 (2017). [PubMed]
161. Wu,J., Xia,S., Kalionis,B., Wan,W., & Sun,T. The role of oxidative stress and inflammation in cardiovascular aging. Biomed. Res. Int. 2014, 615312 (2014). [PubMed]
162. Salminen,A. et al. Activation of innate immunity system during aging: NF-κB signaling is the molecular culprit of inflamm-aging. Ageing Res. Rev. 7, 83-105 (2008). [PubMed]
163. O’Donovan,A. et al. Cumulative inflammatory load is associated with short leukocyte telomere length in the Health, Aging and Body Composition Study. PLoS ONE 6, e19687 (2011). [PubMed]
164. Tsokos,G.C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110-2121 (2011). [PubMed]
165. Grieves,J.L. et al. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc. Natl. Acad. Sci. U. S. A 112, 5117-5122 (2015). [PubMed]
166. Noble,P.W. et al. DNA-damaging autoantibodies and cancer: the lupus butterfly theory. Nat. Rev. Rheumatol. 12, 429-434 (2016). [PubMed]
167. Liu,L. et al. Gadd45b and Gadd45g are critical for regulating autoimmunity. J. Exp. Med. 202, 1341-1347 (2005). [PubMed]
168. Senejani,A.G. et al. Mutation of POLB causes lupus in mice. Cell Rep. 6, 1-8 (2014). [PubMed]
169. Mireles-Canales,M.P., Gonzalez-Chavez,S.A., Quinonez-Flores,C.M., Leon-Lopez,E.A., & Pacheco-Tena,C. DNA damage and deficiencies in the mechanisms of its repair: implications in the pathogenesis of Systemic Lupus Erythematosus. J. Immunol. Res. 2018, 8214379 (2018). [PubMed]
170. Cerboni,B. et al. Poly(ADP-ribose) polymerase activity in systemic lupus erythematosus and systemic sclerosis. Hum. Immunol. 70, 487-491 (2009). [PubMed]
171. Souliotis,V.L., Vougas,K., Gorgoulis,V.G., & Sfikakis,P.P. Defective DNA repair and chromatin organization in patients with quiescent systemic lupus erythematosus. Arthritis Res. Ther. 18, 182 (2016). [PubMed]
172. Souliotis,V.L. & Sfikakis,P.P. Increased DNA double-strand breaks and enhanced apoptosis in patients with lupus nephritis. Lupus 24, 804-815 (2015). [PubMed]
173. Kaplan,M.J. Neutrophils in the pathogenesis and manifestations of SLE. Nat. Rev. Rheumatol. 7, 691-699 (2011). [PubMed]
174. McConnell,J.R., Crockard,A.D., Cairns,A.P., & Bell,A.L. Neutrophils from systemic lupus erythematosus patients demonstrate increased nuclear DNA damage. Clin. Exp. Rheumatol. 20, 653-660 (2002). [PubMed]
175. Lee,K.J., Dong,X., Wang,J., Takeda,Y., & Dynan,W.S. Identification of human autoantibodies to the DNA ligase IV/XRCC4 complex and mapping of an autoimmune epitope to a potential regulatory region. J. Immunol. 169, 3413-3421 (2002). [PubMed]
176. Fell,V.L. & Schild-Poulter,C. The Ku heterodimer: function in DNA repair and beyond. Mutat. Res. Rev. Mutat. Res. 763, 15-29 (2015). [PubMed]
177. Luo,H. et al. Novel autoantibodies related to cell death and DNA repair pathways in systemic lupus erythematosus. Genomics Proteomics Bioinformatics 17, 248-259 (2019). [PubMed]
178. Shao,W.H. & Cohen,P.L. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res. Ther. 13, 202 (2011). [PubMed]
179. Cohen,P.L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135-140 (2002). [PubMed]
180. Zhao,P. et al. Increased expression of human T-cell immunoglobulin- and mucin-domain-containing molecule-4 in peripheral blood mononuclear cells from patients with system lupus erythematosus. Cell Mol. Immunol. 7, 152-156 (2010). [PubMed]
181. Gabriel,S.E. et al. Survival in rheumatoid arthritis: a population-based analysis of trends over 40 years. Arthritis Rheum. 48, 54-58 (2003). [PubMed]
182. Helmick,C.G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 58, 15-25 (2008). [PubMed]
183. Lawrence,R.C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26-35 (2008). [PubMed]
184. Shao,L. DNA damage response signals transduce stress from rheumatoid arthritis risk factors into T cell dysfunction. Front. Immunol. 9, 3055 (2018). [PubMed]
185. Mateen,S., Moin,S., Khan,A.Q., Zafar,A., & Fatima,N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 11, e0152925 (2016). [PubMed]
186. Kundu,S. et al. Attenuation of oxidative stress by allylpyrocatechol in synovial cellular infiltrate of patients with rheumatoid arthritis. Free Radic. Res. 45, 518-526 (2011). [PubMed]
187. Martelli-Palomino,G. et al. DNA damage increase in peripheral neutrophils from patients with rheumatoid arthritis is associated with the disease activity and the presence of shared epitope. Clin. Exp. Rheumatol. 35, 247-254 (2017). [PubMed]
188. Altindag,O., Karakoc,M., Kocyigit,A., Celik,H., & Soran,N. Increased DNA damage and oxidative stress in patients with rheumatoid arthritis. Clin. Biochem. 40, 167-171 (2007). [PubMed]
189. Souliotis,V.L., Vlachogiannis,N.I., Pappa,M., Argyriou,A., & Sfikakis,P.P. DNA damage accumulation, defective chromatin organization and deficient DNA repair capacity in patients with rheumatoid arthritis. Clin. Immunol. 203, 28-36 (2019). [PubMed]
190. Bashir,S., Harris,G., Denman,M.A., Blake,D.R., & Winyard,P.G. Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann. Rheum. Dis. 52, 659-666 (1993). [PubMed]
191. Shao,L. et al. Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. J. Exp. Med. 206, 1435-1449 (2009). [PubMed]
192. Hajizadeh,S., DeGroot,J., TeKoppele,J.M., Tarkowski,A., & Collins,L.V. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res. Ther. 5, R234-R240 (2003). [PubMed]
193. Firestein,G.S., Echeverri,F., Yeo,M., Zvaifler,N.J., & Green,D.R. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc. Natl. Acad. Sci. U. S. A 94, 10895-10900 (1997). [PubMed]
194. Firestein,G.S. et al. Apoptosis in rheumatoid arthritis: p53 overexpression in rheumatoid arthritis synovium. Am. J. Pathol. 149, 2143-2151 (1996). [PubMed]
195. Yamanishi,Y. et al. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc. Natl. Acad. Sci. U. S. A 99, 10025-10030 (2002). [PubMed]
196. Li,Y. et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 30, 477-492 (2019). [PubMed]
197. Standards of medical care in diabetes-2017: summary of revisions. Diabetes Care 40, S4-S5 (2017). [PubMed]
198. Oakley,N.J. et al. Type 1 diabetes mellitus and educational attainment in childhood: a systematic review. BMJ Open 10, e033215 (2020). [PubMed]
199. Monnier,L. et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295, 1681-1687 (2006). [PubMed]
200. Al-Aubaidy,H.A. & Jelinek,H.F. Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur. J. Endocrinol. 164, 899-904 (2011). [PubMed]
201. Gardner,J.P. et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation 111, 2171-2177 (2005). [PubMed]
202. Adaikalakoteswari,A., Balasubramanyam,M., Ravikumar,R., Deepa,R., & Mohan,V. Association of telomere shortening with impaired glucose tolerance and diabetic macroangiopathy. Atherosclerosis 195, 83-89 (2007). [PubMed]
203. Shimizu,I., Yoshida,Y., Suda,M., & Minamino,T. DNA damage response and metabolic disease. Cell Metab. 20, 967-977 (2014). [PubMed]
204. Guo,N. et al. Short telomeres compromise b-cell signaling and survival. PLoS ONE 6, e17858 (2011). [PubMed]
205. Tavana,O. & Zhu,C. Too many breaks (brakes): pancreatic b-cell senescence leads to diabetes. Cell Cycle 10, 2471-2484 (2011). [PubMed]
206. Tornovsky-Babeay,S. et al. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in b cells. Cell Metab. 19, 109-121 (2014). [PubMed]
207. Burgdorf,K.S. et al. Studies of the association of Arg72Pro of tumor suppressor protein p53 with type 2 diabetes in a combined analysis of 55,521 Europeans. PLoS ONE 6, e15813 (2011). [PubMed]
208. Saxena,R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331-1336 (2007). [PubMed]
209. North,K.E. et al. Variation in the checkpoint kinase 2 gene is associated with type 2 diabetes in multiple populations. Acta Diabetol. 47 Suppl 1, 199-207 (2010). [PubMed]
210. Prattichizzo,F. et al. “Inflammaging” as a druggable target: a senescence-associated secretory phenotype-centered view of type 2 diabetes. Oxid. Med. Cell Longev. 2016, 1810327 (2016). [PubMed]
211. Franceschi,C. & Campisi,J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69 Suppl 1, S4-S9 (2014). [PubMed]
212. Hotamisligil,G.S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 271, 665-668 (1996). [PubMed]
213. Karunakaran,U. & Park,K.G. A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense. Diabetes Metab. J. 37, 106-112 (2013). [PubMed]
214. Lortz,S. et al. Protection of insulin-producing RINm5F cells against cytokine-mediated toxicity through overexpression of antioxidant enzymes. Diabetes 49, 1123-1130 (2000). [PubMed]
215. Moriscot,C., Richard,M.J., Favrot,M.C., & Benhamou,P.Y. Protection of insulin-secreting INS-1 cells against oxidative stress through adenoviral-mediated glutathione peroxidase overexpression. Diabetes Metab. 29, 145-151 (2003). [PubMed]
216. Tanaka,Y., Tran,P.O., Harmon,J., & Robertson,R.P. A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity. Proc. Natl. Acad. Sci. U. S. A 99, 12363-12368 (2002). [PubMed]
217. Lee,J.K., Choi,Y.L., Kwon,M., & Park,P.J. Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu. Rev. Pathol. 11, 283-312 (2016). [PubMed]
218. Najim,O. et al. The association between type of endocrine therapy and development of estrogen receptor-1 mutation(s) in patients with hormone-sensitive advanced breast cancer: a systematic review and meta-analysis of randomized and non-randomized trials. Biochim. Biophys. Acta Rev. Cancer 1872, 188315 (2019). [PubMed]
219. Lang,S.H. et al. A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int. J. Oncol. 55, 597-616 (2019). [PubMed]
220. Kwon,B.S. et al. Clinical and genetic characteristics of BRCA1/2 mutation in Korean ovarian cancer patients: a multicenter study and literature review. Cancer Res. Treat. 51, 941-950 (2019). [PubMed]
221. Lehmann,A.R., McGibbon,D., & Stefanini,M. Xeroderma pigmentosum. Orphanet. J. Rare Dis. 6, 70 (2011). [PubMed]
222. Lucero,R. & Horowitz,D. Xeroderma pigmentosum. StatPearls [Internet], Treasure Islands, StatPearls Publishing (2020). [PubMed]
223. Thoms,K.M., Kuschal,C., & Emmert,S. Lessons learned from DNA repair defective syndromes. Exp. Dermatol. 16, 532-544 (2007). [PubMed]
224. Rothblum-Oviatt,C. et al. Ataxia telangiectasia: a review. Orphanet. J. Rare Dis. 11, 159 (2016). [PubMed]
225. Andreassen,C.N. et al. ATM sequence variants and risk of radiation-induced subcutaneous fibrosis after postmastectomy radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 64, 776-783 (2006). [PubMed]
226. Dong,L., Cui,J., Tang,F., Cong,X., & Han,F. Ataxia telangiectasia-mutated gene polymorphisms and acute normal tissue injuries in cancer patients after radiation therapy: a systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 91, 1090-1098 (2015). [PubMed]
227. Santivasi,W.L. & Xia,F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid. Redox Signal. 21, 251-259 (2014). [PubMed]
228. Maillet,P. et al. A polymorphism in the ATM gene modulates the penetrance of hereditary non-polyposis colorectal cancer. Int. J. Cancer 88, 928-931 (2000). [PubMed]
229. Angele,S. et al. ATM polymorphisms as risk factors for prostate cancer development. Br. J. Cancer 91, 783-787 (2004). [PubMed]
230. Hall,J. The ataxia-telangiectasia mutated gene and breast cancer: gene expression profiles and sequence variants. Cancer Lett. 227, 105-114 (2005). [PubMed]
231. Xu,Y. et al. A meta-analysis of the relationship between ataxia-telangiectasia mutated gene polymorphisms and lung cancer susceptibility. Pathol. Res. Pract. 213, 1152-1159 (2017). [PubMed]
232. Kim,J.H. et al. Genetic polymorphisms of ataxia telangiectasia mutated affect lung cancer risk. Hum. Mol. Genet. 15, 1181-1186 (2006). [PubMed]
233. Cancer Genome Atlas Research Network Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615 (2011). [PubMed]
234. Claus,E.B., Schildkraut,J.M., Thompson,W.D., & Risch,N.J. The genetic attributable risk of breast and ovarian cancer. Cancer 77, 2318-2324 (1996). [PubMed]
235. Sosa,V. et al. Oxidative stress and cancer: an overview. Ageing Res. Rev. 12, 376-390 (2013). [PubMed]
236. Civenni,G. et al. The multi-kinase inhibitor EC-70124 delivers a double-hit to prostate cancer stem cells interfering with both STAT3 and NF-κB signaling. Eur. Urol. 16, 1294e (2017). [CrossRef]
237. De Simone,V. et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-κB to promote colorectal cancer cell growth. Oncogene 34, 3493-3503 (2015). [PubMed]
238. Schieber,M. & Chandel,N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453-R462 (2014). [PubMed]
239. Sabharwal,S.S. & Schumacker,P.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709-721 (2014). [PubMed]
240. Kawanishi,S., Ohnishi,S., Ma,N., Hiraku,Y., & Murata,M. Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int. J. Mol. Sci. 18, (2017). [PubMed]
241. Itsara,L.S. et al. Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet. 10, e1003974 (2014). [PubMed]
242. Brancato,B. et al. 8-Oxo-7,8-dihydro-2′-deoxyguanosine and other lesions along the coding strand of the exon 5 of the tumour suppressor gene P53 in a breast cancer case-control study. DNA Res. 23, 395-402 (2016). [PubMed]
243. DeBalsi,K.L., Hoff,K.E., & Copeland,W.C. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res. Rev. 33, 89-104 (2017). [PubMed]
244. Hamidzadeh,K., Christensen,S.M., Dalby,E., Chandrasekaran,P., & Mosser,D.M. Macrophages and the recovery from acute and chronic inflammation. Annu. Rev. Physiol. 79, 567-592 (2017). [PubMed]
245. Kundu,J.K. & Surh,Y.J. Inflammation: gearing the journey to cancer. Mutat. Res. 659, 15-30 (2008). [PubMed]
246. Hakem,R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 27, 589-605 (2008). [PubMed]
247. Jung,Y.J., Isaacs,J.S., Lee,S., Trepel,J., & Neckers,L. IL-1b-mediated up-regulation of HIF-1a via an NFκB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 17, 2115-2117 (2003). [PubMed]
248. Sandau,K.B., Faus,H.G., & Brune,B. Induction of hypoxia-inducible-factor 1 by nitric oxide is mediated via the PI 3K pathway. Biochem. Biophys. Res. Commun. 278, 263-267 (2000). [PubMed]
249. Koshiji,M. et al. HIF-1a induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol. Cell 17, 793-803 (2005). [PubMed]
250. Chang,C.L. et al. Oxidative stress inactivates the human DNA mismatch repair system. Am. J. Physiol. Cell Physiol. 283, C148-C154 (2002). [PubMed]
251. Karanjawala,Z.E., Murphy,N., Hinton,D.R., Hsieh,C.L., & Lieber,M.R. Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in DNA double-strand break repair mutants. Curr. Biol. 12, 397-402 (2002). [PubMed]
252. Mills,K.D., Ferguson,D.O., & Alt,F.W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194, 77-95 (2003). [PubMed]
253. Menssen,A. et al. c-MYC delays prometaphase by direct transactivation of MAD2 and BubR1: identification of mechanisms underlying c-MYC-induced DNA damage and chromosomal instability. Cell Cycle 6, 339-352 (2007). [PubMed]
254. Rajagopalan,H., Nowak,M.A., Vogelstein,B., & Lengauer,C. The significance of unstable chromosomes in colorectal cancer. Nat. Rev. Cancer 3, 695-701 (2003). [PubMed]
255. Scanlon,S.E. & Glazer,P.M. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment. DNA Repair (Amst.) 32, 180-189 (2015). [PubMed]
256. Kelderman,S., Schumacher,T.N., & Kvistborg,P. Mismatch repair-deficient cancers are targets for anti-PD-1 herapy. Cancer Cell 28, 11-13 (2015). [PubMed]
257. Bruchard,M. et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19, 57-64 (2013). [PubMed]
258. Wei,Q. et al. Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab. Invest. 94, 52-62 (2014). [PubMed]
259. Dupaul-Chicoine,J. et al. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity 43, 751-763 (2015). [PubMed]
260. Petrilli,V., Bodnar,M., Guey,B., Hacot,S., & Lantuejoul,S. Abstract 2038: A novel role for the NLRP3 inflammasome in lung cancer. Cancer Res. 75, Abstract nr 2038 (2015). [CrossRef]
261. Buttner,R. et al. Inflammaging impairs peripheral nerve maintenance and regeneration. Aging Cell 17, e12833 (2018). [PubMed]
262. Yu,W., Zhang,H., Shin,M.R., & Sesti,F. Oxidation of KCNB1 potassium channels in the murine brain during aging is associated with cognitive impairment. Biochem. Biophys. Res. Commun. 52, 665-669 (2019). [PubMed]
263. Hu,W.T. et al. CSF cytokines in aging, multiple sclerosis, and dementia. Front. Immunol. 10, 480 (2019). [PubMed]
264. Jack,C.R., Jr. et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535-562 (2018). [PubMed]
265. Weller,J. & Budson,A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 7, pii F1000 (2018). [PubMed]
266. Poulsen,H.E., Nadal,L.L., Broedbaek,K., Nielsen,P.E., & Weimann,A. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim. Biophys. Acta 1840, 801-808 (2014). [PubMed]
267. Sliwinska,A. et al. The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1) – a potential diagnostic biomarkers of Alzheimer’s disease. J. Neurol. Sci. 368, 155-159 (2016). [PubMed]
268. Weimann,A., Simonsen,A.H., & Poulsen,H.E. Measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine in cerebrospinal fluid by ultra performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1073, 110-117 (2018). [PubMed]
269. Liu,Z. et al. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 9, 477 (2018). [PubMed]
270. Rojas-Gutierrez,E. et al. Alzheimer’s disease and metabolic syndrome: a link from oxidative stress and inflammation to neurodegeneration. Synapse 71, e21990 (2017). [PubMed]
271. Yamamoto,M. et al. Interferon-g and tumor necrosis factor-a regulate amyloid-b plaque deposition and b-secretase expression in Swedish mutant APP transgenic mice. Am. J. Pathol. 170, 680-692 (2007). [PubMed]
272. Lindberg,C., Selenica,M.L., Westlind-Danielsson,A., & Schultzberg,M. b-amyloid protein structure determines the nature of cytokine release from rat microglia. J. Mol. Neurosci. 27, 1-12 (2005). [PubMed]
273. Lindberg,C., Hjorth,E., Post,C., Winblad,B., & Schultzberg,M. Cytokine production by a human microglial cell line: effects of b-amyloid and a-melanocyte-stimulating hormone. Neurotox. Res. 8, 267-276 (2005). [PubMed]
274. Combs,C.K., Karlo,J.C., Kao,S.C., & Landreth,G.E. b-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179-1188 (2001). [PubMed]
275. Sutinen,E.M., Pirttila,T., Anderson,G., Salminen,A., & Ojala,J.O. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-b production in human neuron-like cells. J. Neuroinflammation 9, 199 (2012). [PubMed]
276. Gomes,B.A.Q. et al. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxid. Med. Cell Longev. 2018, 8152373 (2018). [PubMed]
277. Morgan,M.J. & Liu,Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103-115 (2011). [PubMed]
278. Jenner,P. Oxidative stress in Parkinson’s disease. Ann. Neurol. 53 Suppl 3, S26-S36 (2003). [PubMed]
279. Nakabeppu,Y., Tsuchimoto,D., Yamaguchi,H., & Sakumi,K. Oxidative damage in nucleic acids and Parkinson’s disease. J. Neurosci. Res. 85, 919-934 (2007). [PubMed]
280. Gmitterova,K., Gawinecka,J., Heinemann,U., Valkovic,P., & Zerr,I. DNA versus RNA oxidation in Parkinson’s disease: Which is more important? Neurosci. Lett. 662, 22-28 (2018). [PubMed]
281. Raza,C., Anjum,R., & Shakeel,N.U.A. Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci. 226, 77-90 (2019). [PubMed]
282. Pinho,B.R., Reis,S.D., Hartley,R.C., Murphy,M.P., & Oliveira,J.M.A. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radic. Biol. Med. 130, 318-327 (2019). [PubMed]
283. Valdez,L.B. et al. Complex I syndrome in striatum and frontal cortex in a rat model of Parkinson disease. Free Radic. Biol. Med. 135, 274-282 (2019). [PubMed]
284. Kluss,J.H., Mamais,A., & Cookson,M.R. LRRK2 links genetic and sporadic Parkinson’s disease. Biochem. Soc. Trans. 47, 651-661 (2019). [PubMed]
285. Gonzales,H. & Pacheco,R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J. Neuroinflamm. 11, 201 (2014). [CrossRef]
286. Storelli,E., Cassina,N., Rasini,E., Marino,F., & Cosentino,M. Do Th17 lymphocytes and IL-17 contribute to Parkinson’s disease? A systematic review of available evidence. Front. Neurol. 10, 13 (2019). [PubMed]
287. Di Benedetto,S., Muller,L., Wenger,E., Duzel,S., & Pawelec,G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci. Biobehav. Rev. 75, 114-128 (2017). [PubMed]
288. Mejias,N.H., Martinez,C.C., Stephens,M.E., & de Rivero Vaccari,J.P. Contribution of the inflammasome to inflammaging. J. Inflamm. (Lond.) 15, 23 (2018). [PubMed]
289. Uttara,B., Singh,A.V., Zamboni,P., & Mahajan,R.T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65-74 (2009). [PubMed]
290. Balmus,I.M., Ciobica,A., Trifan,A., & Stanciu,C. The implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: Clinical aspects and animal models. Saudi J. Gastroenterol. 22, 3-17 (2016). [PubMed]
291. MacNee,W. Is chronic obstructive pulmonary disease an accelerated aging disease? Ann. Am. Thorac. Soc. 13 Suppl 5, S429-S437 (2016). [PubMed]
292. Pinder,J.B., Attwood,K.M., & Dellaire,G. Reading, writing, and repair: the role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair. Front. Genet. 4, 45 (2013). [PubMed]
293. Souliotis,V.L. et al. DNA damage response and oxidative stress in systemic autoimmunity. Int. J. Mol. Sci. 21, 55 (2020). [PubMed]
294. Cussiol,J.R.R., Soares,B.L., & Bastos de Oliveira,F.M. From yeast to humans: understanding the biology of DNA damage response (DDR) kinases. Genet. Mol. Biol. 43, e20190071 (2020). [CrossRef]
295. Ciccia,A. & Elledge,S.J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179-204 (2010). [PubMed]
296. Majidinia,M. & Yousefi,B. DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst.) 54, 22-29 (2017). [PubMed]
297. Koole,W. et al. A polymerase theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat. Commun. 5, 3216 (2014). [PubMed]
298. Chang,H.H.Y., Pannunzio,N.R., Adachi,N., & Lieber,M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495-506 (2017). [PubMed]
299. Gillet,L.C. & Scharer,O.D. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 106, 253-276 (2006). [PubMed]
300. Shuck,S.C., Short,E.A., & Turchi,J.J. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res. 18, 64-72 (2008). [PubMed]
301. Kusakabe,M. et al. Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ. 41, 2 (2019). [PubMed]
302. Min,J.H. & Pavletich,N.P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570-575 (2007). [PubMed]
303. Sugasawa,K., Akagi,J., Nishi,R., Iwai,S., & Hanaoka,F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. Mol. Cell 36, 642-653 (2009). [PubMed]
304. Schaeffer,L. et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13, 2388-2392 (1994). [PubMed]
305. Schaeffer,L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58-63 (1993). [PubMed]
306. Jones,C.J. & Wood,R.D. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 32, 12096-12104 (1993). [PubMed]
307. Li,C.L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59, 1025-1034 (2015). [PubMed]
308. Wakasugi,M. et al. Physical and functional interaction between DDB and XPA in nucleotide excision repair. Nucleic Acids Res. 37, 516-525 (2009). [PubMed]
309. Anindya,R. et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell 38, 637-648 (2010). [PubMed]
310. Cambindo Botto,A.E., Munoz,J.C., & Munoz,M.J. Coupling between nucleotide excision repair and gene expression. RNA Biol. 15, 845-848 (2018). [PubMed]
311. Marteijn,J.A., Lans,H., Vermeulen,W., & Hoeijmakers,J.H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465-481 (2014).
312. Lee,T.H. & Kang,T.H. DNA oxidation and excision repair pathways. Int. J. Mol. Sci. 20, 6092 (2019). [PubMed]
313. Dianov,G.L. & Hubscher,U. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. 41, 3483-3490 (2013). [PubMed]
314. Krokan,H.E. & Bjoras,M. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583 (2013). [PubMed]
315. Jacobs,A.L. & Schar,P. DNA glycosylases: in DNA repair and beyond. Chromosoma 121, 1-20 (2012). [PubMed]
316. Almeida,K.H. & Sobol,R.W. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst.) 6, 695-711 (2007). [PubMed]
317. Svilar,D., Goellner,E.M., Almeida,K.H., & Sobol,R.W. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid. Redox Signal. 14, 2491-2507 (2011). [PubMed]
318. Akbari,M. et al. Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity. DNA Repair (Amst.) 8, 834-843 (2009). [PubMed]
319. Reynolds,P., Cooper,S., Lomax,M., & O’Neill,P. Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res. 43, 4028-4038 (2015). [PubMed]
320. Liu,P. & Demple,B. DNA repair in mammalian mitochondria: much more than we thought? Environ. Mol. Mutagen. 51, 417-426 (2010). [PubMed]
321. Akbari,M., Visnes,T., Krokan,H.E., & Otterlei,M. Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst.) 7, 605-616 (2008). [PubMed]
322. Kunkel,T.A. Evolving views of DNA replication (in)fidelity. Cold Spring Harb. Symp. Quant. Biol. 74, 91-101 (2009). [PubMed]
323. Jiricny,J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7, 335-346 (2006). [PubMed]
324. Sachadyn,P. Conservation and diversity of MutS proteins. Mutat. Res. 694, 20-30 (2010). [PubMed]
325. Jiricny,J. Postreplicative mismatch repair. Cold Spring Harb. Perspect. Biol. 5, a012633 (2013). [PubMed]
326. Qiu,R. et al. MutL traps MutS at a DNA mismatch. Proc. Natl. Acad. Sci. U. S. A 112, 10914-10919 (2015). [PubMed]
327. Kadyrov,F.A., Dzantiev,L., Constantin,N., & Modrich,P. Endonucleolytic function of MutLa in human mismatch repair. Cell 126, 297-308 (2006). [PubMed]
328. Genschel,J. & Modrich,P. Mechanism of 5′-directed excision in human mismatch repair. Mol. Cell 12, 1077-1086 (2003). [PubMed]
329. Guo,S. et al. Regulation of replication protein A functions in DNA mismatch repair by phosphorylation. J. Biol. Chem. 281, 21607-21616 (2006). [PubMed]
330. Yuan,F., Gu,L., Guo,S., Wang,C., & Li,G.M. Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J. Biol. Chem. 279, 20935-20940 (2004). [PubMed]
331. Chen,Y. et al. Benzo[a]pyrene repressed DNA mismatch repair in human breast cancer cells. Toxicology 304, 167-172 (2013). [PubMed]
332. Edwards,R.A. et al. Epigenetic repression of DNA mismatch repair by inflammation and hypoxia in inflammatory bowel disease-associated colorectal cancer. Cancer Res. 69, 6423-6429 (2009). [PubMed]
333. Nakamura,H. et al. Human mismatch repair gene, MLH1, is transcriptionally repressed by the hypoxia-inducible transcription factors, DEC1 and DEC2. Oncogene 27, 4200-4209 (2008). [PubMed]
334. Bindra,R.S. & Glazer,P.M. Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett. 252, 93-103 (2007). [PubMed]
335. Mihaylova,V.T. et al. Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol. Cell Biol. 23, 3265-3273 (2003). [PubMed]
336. Li,Y.H. et al. Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response. PLoS ONE 7, e39588 (2012). [PubMed]
337. Diaz-Padilla,I. et al. Mismatch repair status and clinical outcome in endometrial cancer: a systematic review and meta-analysis. Crit Rev. Oncol. Hematol. 88, 154-167 (2013). [PubMed]
338. Smyth,E.C. et al. Mismatch repair deficiency, microsatellite instability, and aurvival: an exploratory analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial. JAMA Oncol. 3, 1197-1203 (2017). [PubMed]
339. Wyman,C. & Kanaar,R. DNA double-strand break repair: all’s well that ends well. Annu. Rev. Genet. 40, 363-383 (2006). [PubMed]
340. Sallmyr,A. & Tomkinson,A.E. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J. Biol. Chem. 293, 10536-10546 (2018). [PubMed]
341. Mirza-Aghazadeh-Attari,M. et al. 53BP1: a key player of DNA damage response with critical functions in cancer. DNA Repair (Amst.) 73, 110-119 (2019). [PubMed]
342. Panier,S. & Boulton,S.J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 15, 7-18 (2014). [PubMed]
343. Weaver,D.T. Regulation and repair of double-strand DNA breaks. Crit Rev. Eukaryot. Gene Expr. 6, 345-375 (1996). [PubMed]
344. Gottlieb,T.M. & Jackson,S.P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131-142 (1993). [PubMed]
345. Costantini,S., Woodbine,L., Andreoli,L., Jeggo,P.A., & Vindigni,A. Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK. DNA Repair (Amst.) 6, 712-722 (2007). [PubMed]
346. Yano,K. et al. Ku recruits XLF to DNA double-strand breaks. EMBO Rep. 9, 91-96 (2008). [PubMed]
347. Grundy,G.J. et al. APLF promotes the assembly and activity of non-homologous end joining protein complexes. EMBO J. 32, 112-125 (2013). [PubMed]
348. Andres,S.N. et al. A human XRCC4-XLF complex bridges DNA. Nucleic Acids Res. 40, 1868-1878 (2012). [PubMed]
349. Li,S. et al. Polynucleotide kinase and aprataxin-like forkhead-associated protein (PALF) acts as both a single-stranded DNA endonuclease and a single-stranded DNA 3′ exonuclease and can participate in DNA end joining in a biochemical system. J. Biol. Chem. 286, 36368-36377 (2011). [PubMed]
350. Roberts,S.A. et al. Ku is a 5′-dRP/AP lyase that excises nucleotide damage near broken ends. Nature 464, 1214-1217 (2010). [PubMed]
351. Ma,Y., Pannicke,U., Schwarz,K., & Lieber,M.R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108, 781-794 (2002). [PubMed]
352. Perry,J.J. et al. WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat. Struct. Mol. Biol. 13, 414-422 (2006). [PubMed]
353. Davis,A.J. & Chen,D.J. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res. 2, 130-143 (2013). [PubMed]
354. Grawunder,U. et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388, 492-495 (1997). [PubMed]
355. Ramadan,K., Shevelev,I.V., Maga,G., & Hubscher,U. De novo DNA synthesis by human DNA polymerase lambda, DNA polymerase mu and terminal deoxyribonucleotidyl transferase. J. Mol. Biol. 339, 395-404 (2004). [PubMed]
356. Wright,W.D., Shah,S.S., & Heyer,W.D. Homologous recombination and the repair of DNA double-strand breaks. J. Biol. Chem. 293, 10524-10535 (2018). [PubMed]
357. Helleday,T. Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis 31, 955-960 (2010). [PubMed]
358. Li,X. & Heyer,W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99-113 (2008). [PubMed]
359. Sun,Y., Jiang,X., Chen,S., Fernandes,N., & Price,B.D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. U. S. A 102, 13182-13187 (2005). [PubMed]
360. Stracker,T.H. & Petrini,J.H. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12, 90-103 (2011). [PubMed]
361. Stiff,T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390-2396 (2004). [PubMed]
362. Ward,I.M. & Chen,J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 276, 47759-47762 (2001). [PubMed]
363. Lukas,C. et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J. 23, 2674-2683 (2004). [PubMed]
364. Stucki,M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213-1226 (2005). [PubMed]
365. Bhatti,S. et al. ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol. Life Sci. 68, 2977-3006 (2011). [PubMed]
366. Altmeyer,M. & Lukas,J. To spread or not to spread – chromatin modifications in response to DNA damage. Curr. Opin. Genet. Dev. 23, 156-165 (2013). [PubMed]
367. Nakamura,A.J., Rao,V.A., Pommier,Y., & Bonner,W.M. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks. Cell Cycle 9, 389-397 (2010). [PubMed]
368. Paull,T.T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886-895 (2000). [PubMed]
369. van Attikum H., Fritsch,O., Hohn,B., & Gasser,S.M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777-788 (2004). [PubMed]
370. Downs,J.A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979-990 (2004). [PubMed]
371. Nimonkar,A.V. et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350-362 (2011). [PubMed]
372. Holloman,W.K. Unraveling the mechanism of BRCA2 in homologous recombination. Nat. Struct. Mol. Biol. 18, 748-754 (2011). [PubMed]
373. Zhang,F., Fan,Q., Ren,K., & Andreassen,P.R. PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol. Cancer Res. 7, 1110-1118 (2009). [PubMed]
374. Sebesta,M. et al. Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans. DNA Repair (Amst.) 12, 691-698 (2013). [PubMed]
375. Shah Punatar,R., Martin,M.J., Wyatt,H.D., Chan,Y.W., & West,S.C. Resolution of single and double Holliday junction recombination intermediates by GEN1. Proc. Natl. Acad. Sci. U. S. A 114, 443-450 (2017). [PubMed]
376. Sies,H. Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291-295 (1997). [PubMed]
377. Urbaniak,S.K., Boguszewska,K., Szewczuk,M., Kazmierczak-Baranska,J., & Karwowski,B.T. 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a potential biomarker for gestational diabetes mellitus (GDM) development. Molecules 25, (2020). [PubMed]
378. Matter,B., Malejka-Giganti,D., Csallany,A.S., & Tretyakova,N. Quantitative analysis of the oxidative DNA lesion, 2,2-diamino-4-(2-deoxy-b-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone (oxazolone), in vitro and in vivo by isotope dilution-capillary HPLC-ESI-MS/MS. Nucleic Acids Res. 34, 5449-5460 (2006). [PubMed]
379. Cadet,J., Douki,T., & Ravanat,J.L. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc. Chem. Res. 41, 1075-1083 (2008). [PubMed]
380. Roszkowski,K., Jozwicki,W., Blaszczyk,P., Mucha-Malecka,A., & Siomek,A. Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. Med. Sci. Monit. 17, CR329-CR333 (2011). [PubMed]
381. Dabrowska,N. & Wiczkowski,A. Analytics of oxidative stress markers in the early diagnosis of oxygen DNA damage. Adv. Clin. Exp. Med. 26, 155-166 (2017). [PubMed]
382. Kasai,H. Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis. Free Radic. Biol. Med. 33, 450-456 (2002). [PubMed]
383. McTigue,P.M., Peterson,R.J., & Kahn,J.D. Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation. Biochemistry 43, 5388-5405 (2004). [PubMed]
384. Dolinnaya,N.G., Kubareva,E.A., Romanova,E.A., Trikin,R.M., & Oretskaya,T.S. Thymidine glycol: the effect on DNA molecular structure and enzymatic processing. Biochimie 95, 134-147 (2013). [PubMed]
385. Cathcart,R., Schwiers,E., Saul,R.L., & Ames,B.N. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc. Natl. Acad. Sci. U. S. A 81, 5633-5637 (1984). [PubMed]
386. Adelman,R., Saul,R.L., & Ames,B.N. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc. Natl. Acad. Sci. U. S. A 85, 2706-2708 (1988). [PubMed]
387. Lustig,M.J., Cadet,J., Boorstein,R.J., & Teebor,G.W. Synthesis of the diastereomers of thymidine glycol, determination of concentrations and rates of interconversion of their cis-trans epimers at equilibrium and demonstration of differential alkali lability within DNA. Nucleic Acids Res. 20, 4839-4845 (1992). [PubMed]
388. Vaishnav,Y.N. & Swenberg,C.E. Application of high-performance liquid chromatography assay for monitoring kinetics of interconversions of stereoisomers of thymidine glycol. J. Liq. Chromatogr. 15, 2385-2396 (1992). [CrossRef]
389. Teebor,G. et al. Quantitative measurement of the diastereoisomers of cis thymidine glycol in gamma-irradiated DNA. Free Radic. Res. Commun. 2, 303-309 (1987). [PubMed]
390. Frenkel,K., Goldstein,M.S., & Teebor,G.W. Identification of the cis-thymine glycol moiety in chemically oxidized and gamma-irradiated deoxyribonucleic acid by high-pressure liquid chromatography analysis. Biochemistry 20, 7566-7571 (1981). [PubMed]
391. Brown,K.L., Adams,T., Jasti,V.P., Basu,A.K., & Stone,M.P. Interconversion of the cis-5R,6S- and trans-5R,6R-thymine glycol lesions in duplex DNA. J. Am. Chem. Soc. 130, 11701-11710 (2008). [PubMed]
392. Hayes,R.C., Petrullo,L.A., Huang,H.M., Wallace,S.S., & LeClerc,J.E. Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions. J. Mol. Biol. 201, 239-246 (1988). [PubMed]
393. Hayes,R.C. & LeClerc,J.E. Sequence dependence for bypass of thymine glycols in DNA by DNA polymerase I. Nucleic Acids Res. 14, 1045-1061 (1986). [PubMed]
394. Clark,J.M. & Beardsley,G.P. Thymine glycol lesions terminate chain elongation by DNA polymerase I in vitro. Nucleic Acids Res. 14, 737-749 (1986). [PubMed]
395. Ide,H., Kow,Y.W., & Wallace,S.S. Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucleic Acids Res. 13, 8035-8052 (1985). [PubMed]
396. Dizdaroglu,M. Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat. Res. 591, 45-59 (2005). [PubMed]
397. Rosenquist,T.A. et al. The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death. DNA Repair (Amst.) 2, 581-591 (2003). [PubMed]
398. Alseth,I. et al. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol. Cell Biol. 19, 3779-3787 (1999). [PubMed]
399. Yoon,J.H., Iwai,S., O’Connor,T.R., & Pfeifer,G.P. Human thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) excise thymine glycol (Tg) from a Tg:G mispair. Nucleic Acids Res. 31, 5399-5404 (2003). [PubMed]
400. Miller,H. et al. Stereoselective excision of thymine glycol from oxidatively damaged DNA. Nucleic Acids Res. 32, 338-345 (2004). [PubMed]
401. Reardon,J.T., Bessho,T., Kung,H.C., Bolton,P.H., & Sancar,A. In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc. Natl. Acad. Sci. U. S. A 94, 9463-9468 (1997). [PubMed]
402. Klungland,A. et al. Base excision repair of oxidative DNA damage activated by XPG protein. Mol. Cell 3, 33-42 (1999). [PubMed]
403. Dianov,G.L., Thybo,T., Dianova,I.I., Lipinski,L.J., & Bohr,V.A. Single nucleotide patch base excision repair is the major pathway for removal of thymine glycol from DNA in human cell extracts. J. Biol. Chem. 275, 11809-11813 (2000). [PubMed]
404. Snowden,T., Acharya,S., Butz,C., Berardini,M., & Fishel,R. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol. Cell 15, 437-451 (2004). [PubMed]
405. Young,L.C., Hays,J.B., Tron,V.A., & Andrew,S.E. DNA mismatch repair proteins: potential guardians against genomic instability and tumorigenesis induced by ultraviolet photoproducts. J. Invest Dermatol. 121, 435-440 (2003). [PubMed]
406. Bellacosa,A. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ. 8, 1076-1092 (2001). [PubMed]
407. Perevozchikova,S.A. et al. Is thymidine glycol containing DNA a substrate of E. coli DNA mismatch repair system? PLoS ONE 9, e104963 (2014). [PubMed]
408. Gentil,A. et al. Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6-4) photoproduct in mammalian cells. Nucleic Acids Res. 24, 1837-1840 (1996). [PubMed]
409. Dumaz,N., Drougard,C., Sarasin,A., & Daya-Grosjean,L. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proc. Natl. Acad. Sci. U. S. A 90, 10529-10533 (1993). [PubMed]
410. Chan,G.L., Doetsch,P.W., & Haseltine,W.A. Cyclobutane pyrimidine dimers and (6-4) photoproducts block polymerization by DNA polymerase I. Biochemistry 24, 5723-5728 (1985). [PubMed]
411. Yang,W. Surviving the sun: repair and bypass of DNA UV lesions. Protein Sci. 20, 1781-1789 (2011). [PubMed]
412. Öztürk,N. et al. Purification and characterization of a type III photolyase from Caulobacter crescentus. Biochemistry 47, 10255-10261 (2008). [PubMed]
413. Kanai,S., Kikuno,R., Toh,H., Ryo,H., & Todo,T. Molecular evolution of the photolyase-blue-light photoreceptor family. J. Mol. Evol. 45, 535-548 (1997). [PubMed]
414. Selby,C.P. & Sancar,A. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. U. S. A 103, 17696-17700 (2006). [PubMed]
415. Sancar,A. Mechanisms of DNA repair by photolyase and excision mnuclease (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 55, 8502-8527 (2016). [PubMed]
416. Zhang,M., Wang,L., & Zhong,D. Photolyase: dynamics and electron-transfer mechanisms of DNA repair. Arch. Biochem. Biophys. 632, 158-174 (2017). [PubMed]
417. Latham,K.A. & Lloyd,R.S. T4 endonuclease V. Perspectives on catalysis. Ann. N. Y. Acad. Sci. 726, 181-196 (1994). [PubMed]
418. Kaur,B. & Doetsch,P.W. Ultraviolet damage endonuclease (Uve1p): a structure and strand-specific DNA endonuclease. Biochemistry 39, 5788-5796 (2000). [PubMed]
419. Fromme,J.C. & Verdine,G.L. Base excision repair. Adv. Protein Chem. 69, 1-41 (2004). [PubMed]
420. Lindahl,T. Keynote: past, present, and future aspects of base excision repair. Prog. Nucleic Acid Res. Mol. Biol. 68, xvii-xxxx (2001). [PubMed]
421. Sancar,A. & Reardon,J.T. Nucleotide excision repair in E. coli and man. Adv. Protein Chem. 69, 43-71 (2004). [PubMed]
422. Budzowska,M. & Kanaar,R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem. Biophys. 53, 17-31 (2009). [PubMed]
423. Yang,W. & Woodgate,R. What a difference a decade makes: insights into translesion DNA synthesis. Proc. Natl. Acad. Sci. U. S. A 104, 15591-15598 (2007). [PubMed]
424. Zolezzi,F. & Linn,S. Studies of the murine DDB1 and DDB2 genes. Gene 245, 151-159 (2000). [PubMed]
425. Takedachi,A., Saijo,M., & Tanaka,K. DDB2 complex-mediated ubiquitylation around DNA damage is oppositely regulated by XPC and Ku and contributes to the recruitment of XPA. Mol. Cell Biol. 30, 2708-2723 (2010). [PubMed]
426. Wakasugi,M. et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem. 277, 1637-1640 (2002). [PubMed]
427. Lu,C.S. et al. The RING finger protein RNF8 ubiquitinates Nbs1 to promote DNA double-strand break repair by homologous recombination. J. Biol. Chem. 287, 43984-43994 (2012). [PubMed]
428. Ismail,I.H. et al. CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids Res. 40, 5497-5510 (2012). [PubMed]
429. Pan,M.R., Peng,G., Hung,W.C., & Lin,S.Y. Monoubiquitination of H2AX protein regulates DNA damage response signaling. J. Biol. Chem. 286, 28599-28607 (2011). [PubMed]
430. Wu,C.Y. et al. Critical role of monoubiquitination of histone H2AX protein in histone H2AX phosphorylation and DNA damage response. J. Biol. Chem. 286, 30806-30815 (2011). [PubMed]
431. Marteijn,J.A. et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 186, 835-847 (2009). [PubMed]
432. Mailand,N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887-900 (2007). [PubMed]
433. Huen,M.S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901-914 (2007). [PubMed]
434. Gatti,M. et al. A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. Cell Cycle 11, 2538-2544 (2012). [PubMed]
435. VanDemark,A.P., Hofmann,R.M., Tsui,C., Pickart,C.M., & Wolberger,C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105, 711-720 (2001). [PubMed]
436. Eddins,M.J., Carlile,C.M., Gomez,K.M., Pickart,C.M., & Wolberger,C. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13, 915-920 (2006). [PubMed]
437. Plans,V. et al. The RING finger protein RNF8 recruits UBC13 for lysine 63-based self polyubiquitylation. J. Cell Biochem. 97, 572-582 (2006). [PubMed]
438. Bekker-Jensen,S. & Mailand,N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst.) 9, 1219-1228 (2010). [PubMed]
439. Danielsen,J.R. et al. DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger. J. Cell Biol. 197, 179-187 (2012). [PubMed]
440. Hartlerode,A.J. et al. Impact of histone H4 lysine 20 methylation on 53BP1 responses to chromosomal double strand breaks. PLoS ONE 7, e49211 (2012). [PubMed]
441. Shao,G. et al. The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc. Natl. Acad. Sci. U. S. A 106, 3166-3171 (2009). [PubMed]
442. Cooper,E.M. et al. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J. 28, 621-631 (2009). [PubMed]
443. Butler,L.R. et al. The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response. EMBO J. 31, 3918-3934 (2012). [PubMed]
444. Kasai,H. et al. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 7, 1849-1851 (1986). [PubMed]
445. Floyd,R.A., Watson,J.J., Harris,J., West,M., & Wong,P.K. Formation of 8-hydroxydeoxyguanosine, hydroxyl free radical adduct of DNA in granulocytes exposed to the tumor promoter, tetradecanoylphorbolacetate. Biochem. Biophys. Res. Commun. 137, 841-846 (1986). [PubMed]
446. Floyd,R.A., Watson,J.J., Wong,P.K., Altmiller,D.H., & Rickard,R.C. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic. Res. Commun. 1, 163-172 (1986). [PubMed]
447. Domijan,A.M. & Peraica,M. Determination of 8-hydroxy-2’deoxyguanosine in urine using HPLC with electrochemical detection. Arh. Hig. Rada Toksikol. 59, 277-282 (2008). [PubMed]
448. Helbock,H.J. et al. DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc. Natl. Acad. Sci. U. S. A 95, 288-293 (1998). [PubMed]
449. Bolner,A., Pilleri,M., De,R., V, & Nordera,G.P. Plasma and urinary HPLC-ED determination of the ratio of 8-OHdG/2-dG in Parkinson’s disease. Clin. Lab. 57, 859-866 (2011). [PubMed]
450. Inaba,Y., Koide,S., Yokoyama,K., & Karube,I. Development of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) measurement method combined with SPE. J. Chromatogr. Sci. 49, 303-309 (2011). [PubMed]
451. Kaur,H. & Halliwell,B. Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection. Biochem. J. 318 ( Pt 1), 21-23 (1996). [PubMed]
452. Tretyakova,N., Villalta,P.W., & Kotapati,S. Mass spectrometry of structurally modified DNA. Chem. Rev. 113, 2395-2436 (2013). [PubMed]
453. Hu,C.W., Cooke,M.S., Tsai,Y.H., & Chao,M.R. 8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine concentrations in various human body fluids: implications for their measurement and interpretation. Arch. Toxicol. 89, 201-210 (2015). [PubMed]
454. Liu,S. & Wang,Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem. Soc. Rev. 44, 7829-7854 (2015). [PubMed]
455. Cadet,J., Douki,T., & Ravanat,J.L. Measurement of oxidatively generated base damage in cellular DNA. Mutat. Res. 711, 3-12 (2011). [PubMed]
456. Malayappan,B., Garrett,T.J., Segal,M., & Leeuwenburgh,C. Urinary analysis of 8-oxoguanine, 8-oxoguanosine, fapy-guanine and 8-oxo-2′-deoxyguanosine by high-performance liquid chromatography-electrospray tandem mass spectrometry as a measure of oxidative stress. J. Chromatogr. A 1167, 54-62 (2007). [PubMed]
457. Singh,R. et al. Simultaneous determination of 8-oxo-2′-deoxyguanosine and 8-oxo-2′-deoxyadenosine in DNA using online column-switching liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 151-160 (2009). [PubMed]
458. Frelon,S. et al. High-performance liquid chromatography–tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem. Res. Toxicol. 13, 1002-1010 (2000). [PubMed]
459. Ravanat,J.L., Duretz,B., Guiller,A., Douki,T., & Cadet,J. Isotope dilution high-performance liquid chromatography-electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in biological samples. J. Chromatogr. B Biomed. Sci. Appl. 715, 349-356 (1998). [PubMed]
460. Serrano,J., Palmeira,C.M., Wallace,K.B., & Kuehl,D.W. Determination of 8-hydroxydeoxyguanosine in biological tissue by liquid chromatography/electrospray ionization-mass spectrometry/mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1789-1791 (1996). [PubMed]
461. Chao,M.R., Yen,C.C., & Hu,C.W. Prevention of artifactual oxidation in determination of cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction. Free Radic. Biol. Med. 44, 464-473 (2008). [PubMed]
462. Ravanat,J.L. et al. Cellular background level of 8-oxo-7,8-dihydro-2′-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis 23, 1911-1918 (2002). [PubMed]
463. Cadet,J., Davies,K.J.A., Medeiros,M.H., Di,M.P., & Wagner,J.R. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic. Biol. Med. 107, 13-34 (2017). [PubMed]
464. Dizdaroglu,M., Nackerdien,Z., Chao,B.C., Gajewski,E., & Rao,G. Chemical nature of in vivo DNA base damage in hydrogen peroxide-treated mammalian cells. Arch. Biochem. Biophys. 285, 388-390 (1991). [PubMed]
465. Dizdaroglu,M. Application of capillary gas chromatography-mass spectrometry to chemical characterization of radiation-induced base damage of DNA: implications for assessing DNA repair processes. Anal. Biochem. 144, 593-603 (1985). [PubMed]
466. Dizdaroglu,M. Characterization of free radical-induced damage to DNA by the combined use of enzymatic hydrolysis and gas chromatography-mass spectrometry. J. Chromatogr. 367, 357-366 (1986). [PubMed]
467. Dizdaroglu,M. Free-radical-induced formation of an 8,5′-cyclo-2′-deoxyguanosine moiety in deoxyribonucleic acid. Biochem. J. 238, 247-254 (1986). [PubMed]
468. Dizdaroglu,M., Dirksen,M.L., Jiang,H.X., & Robbins,J.H. Ionizing-radiation-induced damage in the DNA of cultured human cells. Identification of 8,5-cyclo-2-deoxyguanosine. Biochem. J. 241, 929-932 (1987). [PubMed]
469. Dizdaroglu,M. Gas chromatography-mass spectrometry of free radical-induced products of pyrimidines and purines in DNA. Methods Enzymol. 193, 842-857 (1990). [PubMed]
470. Douki,T., Martini,R., Ravanat,J.L., Turesky,R.J., & Cadet,J. Measurement of 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxo-7,8-dihydroguanine in isolated DNA exposed to gamma radiation in aqueous solution. Carcinogenesis 18, 2385-2391 (1997). [PubMed]
471. Jaruga,P., Speina,E., Gackowski,D., Tudek,B., & Olinski,R. Endogenous oxidative DNA base modifications analysed with repair enzymes and GC/MS technique. Nucleic Acids Res. 28, E16 (2000). [PubMed]
472. Gassman,N.R., Coskun,E., Jaruga,P., Dizdaroglu,M., & Wilson,S.H. Combined effects of high-dose bisphenol A and oxidizing agent (KBrO3) on cellular microenvironment, gene expression, and chromatin structure of Ku70-deficient mouse embryonic fibroblasts. Environ. Health Perspect. 124, 1241-1252 (2016). [PubMed]
473. Gassman,N.R. et al. Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts. PLoS ONE 10, e0118819 (2015). [PubMed]
474. Randerath,K., Reddy,M.V., & Gupta,R.C. 32P-labeling test for DNA damage. Proc. Natl. Acad. Sci. U. S. A 78, 6126-6129 (1981). [PubMed]
475. Jones,N.J. 32P-postlabelling for the sensitive detection of DNA adducts. Methods Mol. Biol. 817, 183-206 (2012). [PubMed]
476. Gupta,R.C. & Arif,J.M. An improved 32P-postlabeling assay for the sensitive detection of 8-oxodeoxyguanosine in tissue DNA. Chem. Res. Toxicol. 14, 951-957 (2001). [PubMed]
477. Ravanat,J.L. Measuring oxidized DNA lesions as biomarkers of oxidative stress: an analytical challenge. FABAD J. Pharm. Sci. 30, 100-113 (2005). [Citation]
478. Collins,A.R., Dobson,V.L., Dusinska,M., Kennedy,G., & Stetina,R. The comet assay: what can it really tell us? Mutat. Res. 375, 183-193 (1997). [PubMed]
479. Collins,A.R. & Dusinska,M. Oxidation of cellular DNA measured with the comet assay. Methods Mol. Biol. 186, 147-159 (2002). [PubMed]
480. Collins,A.R. The comet assay. Principles, applications, and limitations. Methods Mol. Biol. 203, 163-177 (2002). [PubMed]
481. Collins,A., El,Y.N., & Dusinska,M. Sensitive detection of DNA oxidation damage induced by nanomaterials. Free Radic. Biol. Med. 107, 69-76 (2017). [PubMed]
482. ESCODD Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic. Biol. Med. 34, 1089-1099 (2003). [PubMed]
483. Hartwig,A., Dally,H., & Schlepegrell,R. Sensitive analysis of oxidative DNA damage in mammalian cells: use of the bacterial Fpg protein in combination with alkaline unwinding. Toxicol. Lett. 88, 85-90 (1996). [PubMed]
484. Sauvaigo,S., Petec-Calin,C., Caillat,S., Odin,F., & Cadet,J. Comet assay coupled to repair enzymes for the detection of oxidative damage to DNA induced by low doses of gamma-radiation: use of YOYO-1, low-background slides, and optimized electrophoresis conditions. Anal. Biochem. 303, 107-109 (2002). [PubMed]
485. Pouget,J.P., Ravanat,J.L., Douki,T., Richard,M.J., & Cadet,J. Measurement of DNA base damage in cells exposed to low doses of gamma-radiation: comparison between the HPLC-EC and comet assays. Int. J. Radiat. Biol. 75, 51-58 (1999). [PubMed]
486. Ravanat,J.L. et al. Singlet oxygen-mediated damage to cellular DNA determined by the comet assay associated with DNA repair enzymes. Biol. Chem. 385, 17-20 (2004). [PubMed]
487. Speit,G., Schutz,P., Bonzheim,I., Trenz,K., & Hoffmann,H. Sensitivity of the FPG protein towards alkylation damage in the comet assay. Toxicol. Lett. 146, 151-158 (2004). [PubMed]
488. Smith,C.C., O’Donovan,M.R., & Martin,E.A. hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 21, 185-190 (2006). [PubMed]
489. Besaratinia,A. & Pfeifer,G.P. Measuring the formation and repair of UV damage at the DNA sequence level by ligation-mediated PCR. Methods Mol. Biol. 920, 189-202 (2012). [PubMed]
490. Hariharan,P.V. & Cerutti,P.A. Formation and repair of g-ray induced thymine damage in Micrococcus radiodurans. J. Mol. Biol. 66, 65-81 (1972). [PubMed]
491. Hariharan,P.V. & Cerutti,P.A. Formation of products of the 5,6-dihydroxydihydrothymine type by ultraviolet light in HeLa cells. Biochemistry 16, 2791-2795 (1977). [PubMed]
492. Cadet,J. & Wagner,J.R. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 764-765, 18-35 (2014). [PubMed]
493. Ravanat,J.L., Cadet,J., & Douki,T. Oxidatively generated DNA lesions as potential biomarkers of in vivo oxidative stress. Curr. Mol. Med. 12, 655-671 (2012). [PubMed]
494. Rajagopalan,R., Melamede,R.J., Laspia,M.F., Erlanger,B.F., & Wallace,S.S. Properties of antibodies to thymine glycol, a product of the radiolysis of DNA. Radiat. Res. 97, 499-510 (1984). [PubMed]
495. Leadon,S.A. & Hanawalt,P.C. Monoclonal antibody to DNA containing thymine glycol. Mutat. Res. 112, 191-200 (1983). [PubMed]
496. Mitchell,D.L. et al. Development and application of a novel immunoassay for measuring oxidative DNA damage in the environment. Photochem. Photobiol. 75, 257-265 (2002). [PubMed]
497. Toyokuni,S. et al. Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab. Invest. 76, 365-374 (1997). [PubMed]
498. Ide,H., Kow,Y.W., Chen,B.X., Erlanger,B.F., & Wallace,S.S. Antibodies to oxidative DNA damage: characterization of antibodies to 8-oxopurines. Cell Biol. Toxicol. 13, 405-417 (1997). [PubMed]
499. Cooke,M.S. et al. Evaluation of enzyme-linked immunosorbent assay and liquid chromatography-tandem mass spectrometry methodology for the analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine in saliva and urine. Free Radic. Biol. Med. 41, 1829-1836 (2006). [PubMed]
500. Haghdoost,S., Czene,S., Naslund,I., Skog,S., & Harms-Ringdahl,M. Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. Free Radic. Res. 39, 153-162 (2005). [PubMed]
501. Khalil,A.A., Alshamali,A.M., & Gagaa,M.H. Detection of oxidative stress induced by mobile phone radiation in tissues of mice using 8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker. WASET 52, 657-662 (2011). [Citation]
502. Yin,B. et al. Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography-monoclonal antibody-based ELISA. Free Radic. Biol. Med. 18, 1023-1032 (1995). [PubMed]
503. Evans,M.D. et al. Analysis of urinary 8-oxo-7,8-dihydro-purine-2′-deoxyribonucleosides by LC-MS/MS and improved ELISA. Free Radic. Res. 42, 831-840 (2008). [PubMed]
504. Ohno,M. et al. A genome-wide distribution of 8-oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome. Genome Res. 16, 567-575 (2006). [PubMed]
505. Suzuki,M., Bandoski,C., & Bartlett,J.D. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic. Biol. Med. 89, 369-378 (2015). [PubMed]
506. Lu,J. et al. Regulation of MUTYH, a DNA Repair Enzyme, in Renal Proximal Tubular Epithelial Cells. Oxid. Med. Cell Longev. 2015, 682861 (2015). [PubMed]
507. Li,Y., Shi,X., Zhang,J., Zhang,X., & Martin,R.C. Hepatic protection and anticancer activity of curcuma: a potential chemopreventive strategy against hepatocellular carcinoma. Int. J. Oncol. 44, 505-513 (2014). [PubMed]
508. Habib,S.L. & Liang,S. Hyperactivation of Akt/mTOR and deficiency in tuberin increased the oxidative DNA damage in kidney cancer patients with diabetes. Oncotarget 5, 2542-2550 (2014). [PubMed]
509. Sattarova,E.A. et al. Age-dependent guanine oxidation in DNA of different brain regions of Wistar rats and prematurely aging OXYS rats. Biochim. Biophys. Acta 1830, 3542-3552 (2013). [PubMed]
510. Lee,S.F. & Pervaiz,S. Assessment of oxidative stress-induced DNA damage by immunoflourescent analysis of 8-oxodG. Methods Cell Biol. 103, 99-113 (2011). [PubMed]
511. Akatsuka,S. et al. Contrasting genome-wide distribution of 8-hydroxyguanine and acrolein-modified adenine during oxidative stress-induced renal carcinogenesis. Am. J. Pathol. 169, 1328-1342 (2006). [PubMed]
512. Yoshihara,M., Jiang,L., Akatsuka,S., Suyama,M., & Toyokuni,S. Genome-wide profiling of 8-oxoguanine reveals its association with spatial positioning in nucleus. DNA Res. 21, 603-612 (2014). [PubMed]
513. Cooke,M.S., Olinski,R., & Loft,S. Measurement and meaning of oxidatively modified DNA lesions in urine. Cancer Epidemiol. Biomarkers Prev. 17, 3-14 (2008). [PubMed]
514. Barregard,L. et al. Human and methodological sources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Antioxid. Redox Signal. 18, 2377-2391 (2013). [PubMed]
515. Iwamoto,T. et al. Quantitative and in situ detection of oxidatively generated DNA damage 8,5′-cyclo-2′-deoxyadenosine using an immunoassay with a novel monoclonal antibody. Photochem. Photobiol. 90, 829-836 (2014). [PubMed]
516. Yang,Z. et al. A novel electrochemical immunosensor for the quantitative detection of 5-hydroxymethylcytosine in genomic DNA of breast cancer tissue. Chem. Commun. (Camb. ) 51, 14671-14673 (2015). [PubMed]
517. Amouroux,R. et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat. Cell Biol. 18, 225-233 (2016). [PubMed]
518. Ito,S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303 (2011). [PubMed]
519. Alioui,A. et al. 5-Carboxylcytosine is localized to euchromatic regions in the nuclei of follicular cells in axolotl ovary. Nucleus 3, 565-569 (2012). [PubMed]
520. Chowdhury,B., Cho,I.H., Hahn,N., & Irudayaraj,J. Quantification of 5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine from the blood of cancer patients by an enzyme-based immunoassay. Anal. Chim. Acta 852, 212-217 (2014). [PubMed]
521. Li,W. et al. Quantitative, noninvasive imaging of radiation-induced DNA double-strand breaks in vivo. Cancer Res. 71, 4130-4137 (2011). [PubMed]
522. Du,L. et al. Radiosensitization and growth inhibition of cancer cells mediated by an scFv antibody gene against DNA-PKcs in vitro and in vivo. Radiat. Oncol. 5, 70 (2010). [PubMed]
523. Muyldermans,S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775-797 (2013). [PubMed]
524. Burgess,A., Lorca,T., & Castro,A. Quantitative live imaging of endogenous DNA replication in mammalian cells. PLoS ONE 7, e45726 (2012). [PubMed]
525. Cornelissen,B. et al. Imaging DNA damage in vivo using gH2AX-targeted immunoconjugates. Cancer Res. 71, 4539-4549 (2011). [PubMed]
526. Boguszewska,K., Szewczuk,M., Urbaniak,S., & Karwowski,B.T. Review: immunoassays in DNA damage and instability detection. Cell Mol. Life Sci. 76, 4689-4704 (2019). [PubMed]
527. Tehrani,S.S., Karimian,A., Parsian,H., Majidinia,M., & Yousefi,B. Multiple unctions of long non-coding RNAs in oxidative stress, DNA damage response and cancer rogression. J. Cell Biochem. 119, 223-236 (2018). [PubMed]
528. Lee,J.H., Goodarzi,A.A., Jeggo,P.A., & Paull,T.T. 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J. 29, 574-585 (2010). [PubMed]
529. Yoo,E. et al. 53BP1 is associated with replication protein A and is required for RPA2 hyperphosphorylation following DNA damage. Oncogene 24, 5423-5430 (2005). [PubMed]
530. Bouwman,P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688-695 (2010). [PubMed]
531. Neboori,H.J. et al. Low p53 binding protein 1 (53BP1) expression is associated with increased local recurrence in breast cancer patients treated with breast-conserving surgery and radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 83, e677-e683 (2012). [PubMed]
532. Bi,J., Huang,A., Liu,T., Zhang,T., & Ma,H. Expression of DNA damage checkpoint 53BP1 is correlated with prognosis, cell proliferation and apoptosis in colorectal cancer. Int. J. Clin. Exp. Pathol. 8, 6070-6082 (2015). [PubMed]
533. Azimi,A. et al. Suppression of p53R2 gene expression with specific siRNA sensitizes HepG2 cells to doxorubicin. Gene 642, 249-255 (2018). [PubMed]
534. Bonanno,L. et al. The predictive value of 53BP1 and BRCA1 mRNA expression in advanced non-small-cell lung cancer patients treated with first-line platinum-based chemotherapy. Oncotarget 4, 1572-1581 (2013). [PubMed]
535. Hong,S., Li,X., Zhao,Y., Yang,Q., & Kong,B. 53BP1 inhibits the migration and regulates the chemotherapy resistance of ovarian cancer cells. Oncol. Lett. 15, 9917-9922 (2018). [PubMed]
536. Yao,J. et al. 53BP1 loss induces chemoresistance of colorectal cancer cells to 5-fluorouracil by inhibiting the ATM-CHK2-P53 pathway. J. Cancer Res. Clin. Oncol. 143, 419-431 (2017). [PubMed]
537. Kim,Y.J. et al. Glionitrin A, a new diketopiperazine disulfide, activates ATM-ATR-Chk1/2 via 53BP1 phosphorylation in DU145 cells and shows antitumor effect in xenograft model. Biol. Pharm. Bull. 37, 378-386 (2014). [PubMed]
538. Ma,S. et al. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging (Albany. NY) 10, 2062-2078 (2018). [PubMed]
539. Yousefi,B. et al. Differential effects of peroxisome proliferator-activated receptor agonists on doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Cell Mol. Biol. (Noisy-le-grand) 61, 118-122 (2015). [PubMed]
540. Murata,S. et al. Predictors and modulators of synthetic lethality: an update on PARP inhibitors and personalized medicine. Biomed. Res. Int. 2016, 2346585 (2016). [PubMed]
541. Jaspers,J.E. et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 3, 68-81 (2013). [PubMed]
542. Barazas,M. et al. The CST complex mediates end protection at double-strand breaks and promotes PARP Inhibitor sensitivity in BRCA1-deficient cells. Cell Rep. 23, 2107-2118 (2018). [PubMed]
543. Hassan,S., Esch,A., Liby,T., Gray,J.W., & Heiser,L.M. Pathway-enriched gene signature associated with 53BP1 response to PARP inhibition in triple-negative breast cancer. Mol. Cancer Ther. 16, 2892-2901 (2017). [PubMed]
544. Wang,Y.T. et al. Acquired resistance of phosphatase and tensin homolog-deficient cells to poly(ADP-ribose) polymerase inhibitor and Ara-C mediated by 53BP1 loss and SAMHD1 overexpression. Cancer Sci. 109, 821-831 (2018). [PubMed]
545. Litton,J.K. et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 379, 753-763 (2018). [PubMed]
546. Robson,M. et al. Olaparib for etastatic reast ancer in atients with a ermline BRCA utation. N. Engl. J. Med. 377, 523-533 (2017). [PubMed]
547. Liu,J.F. et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol. 15, 1207-1214 (2014). [PubMed]
548. Bixel,K. & Hays,J.L. Olaparib in the management of ovarian cancer. Pharmgenomics. Pers. Med. 8, 127-135 (2015). [PubMed]
549. Mateo,J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697-1708 (2015). [PubMed]
550. Ramakrishnan Geethakumari,P., Schiewer,M.J., Knudsen,K.E., & Kelly,W.K. PARP inhibitors in prostate cancer. Curr. Treat. Options. Oncol. 18, 37 (2017). [PubMed]
551. Li,A. et al. Prospects for combining immune checkpoint blockade with PARP inhibition. J. Hematol. Oncol. 12, 98 (2019). [PubMed]
552. Wilson,A. & Yakovlev,V.A. Cells redox environment modulates BRCA1 expression and DNA homologous recombination repair. Free Radic. Biol. Med. 101, 190-201 (2016). [PubMed]
553. Yakovlev,V.A. Nitric oxide-dependent downregulation of BRCA1 expression promotes genetic instability. Cancer Res. 73, 706-715 (2013). [PubMed]
554. Wilson,A. et al. Nitric oxide-donor/PARP-inhibitor combination: A new approach for sensitization to ionizing radiation. Redox Biol. 24, 101169 (2019). [PubMed]
555. Palacios,J.A. et al. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J. Cell Biol. 191, 1299-1313 (2010). [PubMed]
556. Michishita,E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492-496 (2008). [PubMed]
557. Mao,Z. et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443-1446 (2011). [PubMed]
558. Mostoslavsky,R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315-329 (2006). [PubMed]
559. Wang,R.H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312-323 (2008). [PubMed]
560. Kanfi,Y. et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9, 162-173 (2010). [PubMed]
561. McCord,R.A. et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1, 109-121 (2009). [PubMed]
562. Gao,Y. et al. SIRT6 facilitates directional telomere movement upon oxidative damage. Sci. Rep. 8, 5407 (2018). [PubMed]
563. Ghosh,S., Liu,B., Wang,Y., Hao,Q., & Zhou,Z. Lamin A is an endogenous SIRT6 activator and promotes SIRT6-mediated DNA repair. Cell Rep. 13, 1396-1406 (2015). [PubMed]
564. Imai,S. & Guarente,L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464-471 (2014). [PubMed]
565. Bai,P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461-468 (2011). [PubMed]
566. Lama-Sherpa,T.D. & Shevde,L.A. An emerging regulatory role for the tumor microenvironment in the DNA damage response to double-strand breaks. Mol. Cancer Res. 18, 185-193 (2020). [PubMed]
567. Alagpulinsa,D.A., Ayyadevara,S., Yaccoby,S., & Shmookler Reis,R.J. A cyclin-dependent kinase inhibitor, dinaciclib, impairs homologous recombination and sensitizes multiple myeloma cells to PARP inhibitioni. Mol. Cancer Ther. 15, 241-250 (2016). [PubMed]
568. Liu,J.F. et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol. 15, 1207-1214 (2014). [PubMed]
569. Ronco,C., Martin,A.R., Demange,L., & Benhida,R. ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells. Medchemcomm. 8, 295-319 (2017). [PubMed]
570. Hong,J.H., Chiang,C.S., Sun,J.R., Withers,H.R., & McBride,W.H. Induction of c-fos and junB mRNA following in vivo brain irradiation. Brain Res. Mol. Brain Res. 48, 223-228 (1997). [PubMed]
571. Son,E.W., Rhee,D.K., & Pyo,S. Gamma-irradiation-induced intercellular adhesion molecule-1 (ICAM-1) expression is associated with catalase: activation of Ap-1 and JNK. J. Toxicol. Environ. Health A 69, 2137-2155 (2006). [PubMed]
572. Steinauer,K.K. et al. Radiation induces upregulation of cyclooxygenase-2 (COX-2) protein in PC-3 cells. Int. J. Radiat. Oncol. Biol. Phys. 48, 325-328 (2000). [PubMed]
573. Zhang,J.S., Nakatsugawa,S., Niwa,O., Ju,G.Z., & Liu,S.Z. Ionizing radiation-induced IL-1 alpha, IL-6 and GM-CSF production by human lung cancer cells. Chin. Med. J. (Engl.) 107, 653-657 (1994). [PubMed]
574. Meirovitz,A. et al. Cytokines levels, severity of acute mucositis and the need of PEG tube installation during chemo-radiation for head and neck cancer – a prospective pilot study. Radiat. Oncol. 5, 16 (2010). [PubMed]
575. Pasi,F., Facoetti,A., & Nano,R. IL-8 and IL-6 bystander signalling in human glioblastoma cells exposed to gamma radiation. Anticancer Res. 30, 2769-2772 (2010). [PubMed]
576. Wang,X.S. et al. Inflammatory cytokines are associated with the development of symptom burden in patients with NSCLC undergoing concurrent chemoradiation therapy. Brain Behav. Immun. 24, 968-974 (2010). [PubMed]
577. Zhou,D. et al. Effects of NF-κB1 (p50) targeted gene disruption on ionizing radiation-induced NF-κB activation and TNFα, IL-1α, IL-1b and IL-6 mRNA expression in vivo. Int. J. Radiat. Biol. 77, 763-772 (2001). [PubMed]
578. Fedrigo,C.A. et al. Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr. Radiat. Oncol. 6, 156 (2011). [PubMed]
579. Aykin-Burns,N. et al. Sensitivity to low-dose/low-LET ionizing radiation in mammalian cells harboring mutations in succinate dehydrogenase subunit C is governed by mitochondria-derived reactive oxygen species. Radiat. Res. 175, 150-158 (2011). [PubMed]
580. Valerie,K. et al. Radiation-induced cell signaling: inside-out and outside-in. Mol. Cancer Ther. 6, 789-801 (2007). [PubMed]
581. Goldkorn,T., Balaban,N., Shannon,M., & Matsukuma,K. EGF receptor phosphorylation is affected by ionizing radiation. Biochim. Biophys. Acta 1358, 289-299 (1997). [PubMed]
582. Szumiel,I. Intrinsic radiation sensitivity: cellular signaling is the key. Radiat. Res. 169, 249-258 (2008). [PubMed]
583. Galabova-Kovacs,G. et al. ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle 5, 1514-1518 (2006). [PubMed]
584. Maziere,C. et al. UVA radiation stimulates ceramide production: relationship to oxidative stress and potential role in ERK, JNK, and p38 activation. Biochem. Biophys. Res. Commun. 281, 289-294 (2001). [PubMed]
585. North,R.J. Gamma-irradiation facilitates the expression of adoptive immunity against established tumors by eliminating suppressor T cells. Cancer Immunol. Immunother. 16, 175-181 (1984). [PubMed]
586. Abdel-Wahab,Z. et al. Effect of irradiation on cytokine production, MHC antigen expression, and vaccine potential of interleukin-2 and interferon-gamma gene-modified melanoma cells. Cell Immunol. 171, 246-254 (1996). [PubMed]
587. Ciernik,I.F., Romero,P., Berzofsky,J.A., & Carbone,D.P. Ionizing radiation enhances immunogenicity of cells expressing a tumor-specific T-cell epitope. Int. J. Radiat. Oncol. Biol. Phys. 45, 735-741 (1999). [PubMed]
588. Kang,J., Demaria,S., & Formenti,S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J. Immunother. Cancer 4, 51 (2016). [PubMed]
589. Wang,H., Mu,X., He,H., & Zhang,X.D. Cancer radiosensitizers. Trends Pharmacol. Sci. 39, 24-48 (2018). [PubMed]
590. Goodman,L.S. et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J. Am. Med. Assoc. 132, 126-132 (1946). [PubMed]
591. Gilman,A. The initial clinical trial of nitrogen mustard. Am. J. Surg. 105, 574-578 (1963). [PubMed]
592. Minotti,G., Menna,P., Salvatorelli,E., Cairo,G., & Gianni,L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185-229 (2004). [PubMed]
593. Nitiss,J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338-350 (2009). [PubMed]
594. Misteli,T. & Soutoglou,E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell Biol. 10, 243-254 (2009). [PubMed]
595. Sinha,B.K., Katki,A.G., Batist,G., Cowan,K.H., & Myers,C.E. Differential formation of hydroxyl radicals by adriamycin in sensitive and resistant MCF-7 human breast tumor cells: implications for the mechanism of action. Biochemistry 26, 3776-3781 (1987). [PubMed]
596. Arcamone,F. et al. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Reprinted from Biotechnology and Bioengineering, Vol. XI, Issue 6, Pages 1101-1110 (1969). Biotechnol. Bioeng. 67, 704-713 (2000). [PubMed]
597. Mazerski,J., Martelli,S., & Borowski,E. The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA: molecular dynamics simulations. Acta Biochim. Pol. 45, 1-11 (1998). [PubMed]
598. Fox,E.J. Management of worsening multiple sclerosis with mitoxantrone: a review. Clin. Ther. 28, 461-474 (2006). [PubMed]
599. Marriott,J.J., Miyasaki,J.M., Gronseth,G., & O’Connor,P.W. Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 74, 1463-1470 (2010). [PubMed]
600. Zhao,Y.R., Song,H.M., & Ni,L. Cyclophosphamide for the treatment of acute lymphoblastic leukemia: a protocol for systematic review. Medicine (Baltimore) 98, e14293 (2019). [PubMed]
601. Fraguas-Sánchez,A.I., Martin-Sabroso,C., Fernandez-Carballido,A., & Torres-Suarez,A.I. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother. Pharmacol. 84, 689-706 (2019). [PubMed]
602. Akawatcharangura,P., Taechakraichana,N., & Osiri,M. Prevalence of premature ovarian failure in systemic lupus erythematosus patients treated with immunosuppressive agents in Thailand. Lupus 25, 436-444 (2016). [PubMed]
603. Kang,K.Y. et al. Incidence of cancer among female patients with systemic lupus erythematosus in Korea. Clin. Rheumatol. 29, 381-388 (2010). [PubMed]
604. Newell,D., Gescher,A., Harland,S., Ross,D., & Rutty,C. N-methyl antitumour agents. A distinct class of anticancer drugs? Cancer Chemother. Pharmacol. 19, 91-102 (1987). [PubMed]
605. Zeller,P. et al. Methylhydrazine derivatives, a new class of cytotoxic agents. Experientia 19, 129 (1963). [PubMed]
606. Tarhini,A.A. & Agarwala,S.S. Cutaneous melanoma: available therapy for metastatic disease. Dermatol. Ther. 19, 19-25 (2006). [PubMed]
607. Povirk,L.F. DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutat. Res. 355, 71-89 (1996). [PubMed]
608. Dedon,P.C. The chemical toxicology of 2-deoxyribose oxidation in DNA. Chem. Res. Toxicol. 21, 206-219 (2008). [PubMed]
609. Povirk,L.F. & Goldberg,I.H. A role of oxidative DNA sugar damage in mutagenesis by neocarzinostatin and bleomycin. Biochimie 69, 815-823 (1987). [PubMed]
610. Beerman,T.A., Gawron,L.S., Shin,S., Shen,B., & McHugh,M.M. C-1027, a radiomimetic enediyne anticancer drug, preferentially targets hypoxic cells. Cancer Res. 69, 593-598 (2009). [PubMed]
611. Beerman,T.A., Gawron,L.S., Shen,B., & Kennedy,D.R. The radiomimetic enediyne, 20′-deschloro-C-1027 induces inter-strand DNA crosslinks in hypoxic cells and overcomes cytotoxic radioresistance. DNA Repair (Amst) 21, 165-170 (2014). [PubMed]
612. Carlson,R.W., Sikic,B.I., Turbow,M.M., & Ballon,S.C. Combination cisplatin, vinblastine, and bleomycin chemotherapy (PVB) for malignant germ-cell tumors of the ovary. J. Clin. Oncol. 1, 645-651 (1983). [PubMed]
613. Einhorn,L.H. Curing metastatic testicular cancer. Proc. Natl. Acad. Sci. U. S. A 99, 4592-4595 (2002). [PubMed]
614. Froudarakis,M. et al. Revisiting bleomycin from pathophysiology to safe clinical use. Crit. Rev. Oncol. Hematol. 87, 90-100 (2013). [PubMed]
615. Chen,J. & Stubbe,J. Bleomycins: towards better therapeutics. Nat. Rev. Cancer 5, 102-112 (2005). [PubMed]
616. Allio,T. & Preston,R.J. Increased sensitivity to chromatid aberration induction by bleomycin and neocarzinostatin results from alterations in a DNA damage response pathway. Mutat. Res. 453, 5-15 (2000). [PubMed]
617. Laczmanska,I. et al. Polymorphism in nucleotide excision repair gene XPC correlates with bleomycin-induced chromosomal aberrations. Environ. Mol. Mutagen. 48, 666-671 (2007). [PubMed]
618. Wang,D. & Lippard,S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307-320 (2005). [PubMed]
619. Rosenberg,B., VanCamp,L., & Krigas,T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698-699 (1965). [PubMed]
620. Rosenberg,B., VanCamp,L., Trosko,J.E., & Mansour,V.H. Platinum compounds: a new class of potent antitumour agents. Nature 222, 385-386 (1969). [PubMed]
621. Kelland,L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573-584 (2007). [PubMed]
622. Dilruba,S. & Kalayda,G.V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol. 77, 1103-1124 (2016). [PubMed]
623. Stordal,B. & Davey,M. Understanding cisplatin resistance using cellular models. IUBMB Life 59, 696-699 (2007). [PubMed]
624. Williams,C.J. & Whitehouse,J.M. Cis-platinum: a new anticancer agent. Br. Med. J. 1, 1689-1691 (1979). [PubMed]
625. van der Vijgh,W.J. Clinical pharmacokinetics of carboplatin. Clin. Pharmacokinet. 21, 242-261 (1991). [PubMed]
626. Tang,C.H., Parham,C., Shocron,E., McMahon,G., & Patel,N. Picoplatin overcomes resistance to cell toxicity in small-cell lung cancer cells previously treated with cisplatin and carboplatin. Cancer Chemother. Pharmacol. 67, 1389-1400 (2011). [PubMed]
627. Wheate,N.J., Walker,S., Craig,G.E., & Oun,R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39, 8113-8127 (2010). [PubMed]
628. Maanen,M.J., Smeets,C.J., & Beijnen,J.H. Chemistry, pharmacology and pharmacokinetics of N,N’,N” -triethylenethiophosphoramide (ThioTEPA). Cancer Treat. Rev. 26, 257-268 (2000). [PubMed]
629. Marec-Berard,P. et al. A multicentric randomized phase II clinical trial evaluating high-dose thiotepa as adjuvant treatment to standard chemotherapy in patients with resectable relapsed osteosarcoma. Eur. J. Cancer 125, 58-68 (2020). [PubMed]
630. Faraj,K. et al. Single-dose perioperative mitomycin-C versus thiotepa for low-grade noninvasive bladder cancer. Can. J. Urol. 26, 9922-9930 (2019). [PubMed]
631. Bosschieter,J. et al. An immediate, single intravesical instillation of mitomycin C is of benefit in patients with non-muscle-invasive bladder cancer irrespective of prognostic risk groups. Urol. Oncol. 36, 400 (2018). [PubMed]
632. Léon-Mata,J. et al. Analysis of tolerance and security of chemo hyperthermia with Mitomycin C for the treatment of non-muscle invasive bladder cancer. Arch. Esp. Urol. 71, 426-437 (2018). [PubMed]
633. Aarts,B.M. et al. Intra-arterial mitomycin C infusion in a large cohort of advanced liver metastatic breast cancer patients: safety, efficacy and factors influencing survival. Breast Cancer Res. Treat. 176, 597-605 (2019). [PubMed]
634. Aarts,B.M. et al. Sequential intra-arterial infusion of 90Y-resin microspheres and mitomycin C in chemo refractory liver metastatic breast cancer patients: a single centre pilot study. Radiol. Oncol. (2020). [Epub ahead of print] [PubMed] [CrossRef]
635. Chen,M.J. et al. The functional human dihydrofolate reductase gene. J. Biol. Chem. 259, 3933-3943 (1984). [PubMed]
636. Racanelli,A.C., Rothbart,S.B., Heyer,C.L., & Moran,R.G. Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res. 69, 5467-5474 (2009). [PubMed]
637. Cerqueira,N.M., Fernandes,P.A., & Ramos,M.J. Understanding ribonucleotide reductase inactivation by gemcitabine. Chemistry. 13, 8507-8515 (2007). [PubMed]
638. Cerqueira,N.M., Fernandes,P.A., & Ramos,M.J. Ribonucleotide reductase: a critical enzyme for cancer chemotherapy and antiviral agents. Recent Pat Anticancer Drug Discov. 2, 11-29 (2007). [PubMed]
639. Hawser,S., Lociuro,S., & Islam,K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol. 71, 941-948 (2006). [PubMed]
640. Yoo,C.B. & Jones,P.A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37-50 (2006). [PubMed]
641. Da Costa,E.M., McInnes,G., Beaudry,A., & Raynal,N.J. DNA methylation-targeted drugs. Cancer J. 23, 270-276 (2017). [PubMed]
642. Faleiro,I. et al. Epigenetic therapy in urologic cancers: an update on clinical trials. Oncotarget 8, 12484-12500 (2017). [PubMed]
643. Gaillard,S.L. et al. A phase 1 trial of the oral DNA methyltransferase inhibitor CC-486 and the histone deacetylase inhibitor romidepsin in advanced solid tumors. Cancer 125, 2837-2845 (2019). [PubMed]
644. Nikitaki,Z., Hellweg,C.E., Georgakilas,A.G., & Ravanat,J.L. Stress-induced DNA damage biomarkers: applications and limitations. Front. Chem. 3, 35 (2015). [PubMed]
645. Muñoz,B. & Albores,A. DNA damage caused by polycyclic aromatic hydrocarbons: mechanisms and markers in Selected topics in DNA repair (ed. Chen,C.) 125-144 (InTech, Rijeka, 2011). [CrossRef]
646. Laverty,D.J. & Greenberg,M.M. In vitro bypass of thymidine glycol by DNA polymerase theta forms sequence-dependent frameshift mutations. Biochemistry 56, 6726-6733 (2017). [PubMed]